File size: 191,374 Bytes
5000658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 |
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
import platform
from dataclasses import dataclass, field
from functools import reduce, wraps
from pathlib import Path
from typing import Dict, Iterable, List, Optional, Sequence, Set, Union
import numpy as np
import tensorrt as trt
# isort: off
import torch
import tensorrt as trt
# isort: on
from cuda import cudart
from tensorrt_llm.runtime.redrafter_utils import *
from .._ipc_utils import set_peer_access
from .._utils import (pad_vocab_size, str_dtype_to_torch, torch_to_numpy,
trt_dtype_to_torch, trt_gte_10)
from ..logger import logger
from ..lora_manager import LoraManager
from ..mapping import Mapping
from ..plugin.plugin import CustomAllReduceHelper
from ..quantization import QuantMode
from .kv_cache_manager import GenerationSequence, KVCacheManager, KVCacheUpdater
from .session import _scoped_stream
def decode_words_list(word_dict: List[List[str]],
tokenizer=None,
add_special_tokens=False):
'''
format of word_dict
len(word_dict) should be same to batch_size
word_dict[i] means the words for batch i
len(word_dict[i]) >= 1, which means it must contain at least 1 string
For example, word_dict[2] = [" I am happy", " I am sad"].
'''
assert tokenizer != None, "need to set tokenizer"
decoded_words_batch = []
for word_dict_item in word_dict:
decoded_words_request = []
for item in word_dict_item:
if isinstance(item, bytes):
item = [item.decode()]
ids = tokenizer.encode(item, add_special_tokens=add_special_tokens)
if len(ids) == 0:
continue
decoded_words_request.append(ids)
decoded_words_batch.append(decoded_words_request)
return decoded_words_batch
def to_word_list_format(word_dict: List[List[List[int]]]):
'''
format of word_dict
len(word_dict) should be same to batch_size
word_dict[i] means the words for batch i
len(word_dict[i]) >= 1, which means it must contain at least 1 word
For example, word_dict[2] = [[1, 267], [534]] has two words.
'''
flat_ids = []
offsets = []
for word_dict_item in word_dict:
items_flat_ids = []
items_offsets = []
for ids in word_dict_item:
items_flat_ids += ids
items_offsets.append(len(ids))
flat_ids.append(np.array(items_flat_ids))
offsets.append(np.cumsum(np.array(items_offsets)))
pad_to = max(1, max(len(ids) for ids in flat_ids))
for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0)
offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1)
return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2))
def _prepare_input_ids(tensors: Sequence[torch.Tensor]):
tensors = [torch.flatten(t) for t in tensors]
data = torch.concat(tensors)
row_lengths = [t.size(0) for t in tensors]
row_lengths = torch.tensor(row_lengths,
dtype=torch.int32,
device=data.device)
return (data, row_lengths)
def CUASSERT(cuda_ret):
err = cuda_ret[0]
if err != cudart.cudaError_t.cudaSuccess:
raise RuntimeError(
f"CUDA ERROR: {err}, error code reference: https://nvidia.github.io/cuda-python/module/cudart.html#cuda.cudart.cudaError_t"
)
if len(cuda_ret) > 1:
return cuda_ret[1:]
return None
def _update_cuda_graph_instance(instance, graph):
err = cudart.cudaGraphExecUpdate(instance, graph)
if err != cudart.cudaError_t.cudaSuccess:
# When updating cuda graph failed, destroy and instantiate one.
CUASSERT(cudart.cudaGraphExecDestroy(instance))
instance = CUASSERT(cudart.cudaGraphInstantiate(graph, 0))[0]
return instance
def _prepare_attention_mask(input_ids: torch.Tensor,
pad_id: Optional[int] = None):
is_pad_id_in_inputs = (pad_id is not None) and (pad_id in input_ids)
if input_ids is not None and is_pad_id_in_inputs:
mask = input_ids.ne(pad_id).int()
# for enc-dec models, pad_id could be the start token and should be always counted
# as valid token rather than padded token, so we force its mask to be 1.
# This doesn't impact the existing behavior
mask[:, 0] = 1
return mask
else:
return torch.ones(input_ids.shape,
dtype=torch.int32,
device=input_ids.device)
def _tile_beam_width(tensor: torch.Tensor, num_beams: int):
new_shape = np.array(tensor.shape)
new_shape[0] = new_shape[0] * num_beams
tile_size = np.ones(new_shape.shape, dtype=np.int32)
tile_size = np.insert(tile_size, 1, num_beams)
new_tensor = torch.unsqueeze(tensor, 1)
new_tensor = new_tensor.tile(tile_size.tolist())
new_tensor = new_tensor.reshape(new_shape.tolist())
return new_tensor
class _Profiler(trt.IProfiler):
def __init__(self):
super().__init__()
self.results = []
def report_layer_time(self, layer_name, ms):
self.results.append((layer_name, ms))
def _contiguous_tile_beam_width(tensor: torch.Tensor, size: int,
num_beams: int):
new_shape = list(tensor.shape)
new_shape[0] *= num_beams
numel = tensor.numel()
new_tensor = torch.empty(num_beams * numel,
device=tensor.device,
dtype=tensor.dtype)
# Take the first 'size' values to tile and skip the others.
vals = tensor.view(-1)[:size]
for i in range(num_beams):
new_tensor[i * size:(i + 1) * size] = vals
return new_tensor.view(new_shape)
class _Runtime(object):
runtime_rank: int
runtime: trt.Runtime
engine: trt.ICudaEngine
ctx_context: trt.IExecutionContext
context_0: trt.IExecutionContext
context_1: trt.IExecutionContext
profiler: _Profiler
engine_inspector: trt.EngineInspector
cuda_graph_instances: List[cudart.cudaGraphExec_t]
input_tensor_names: Set[str]
output_tensor_names: Set[str]
def __init__(self, engine_buffer, mapping: Mapping):
self.address = None
self.__prepare(mapping, engine_buffer)
def _serialize_engine(self) -> trt.IHostMemory:
return self.engine.serialize()
def __create_and_setup_context(self, address, profile_idx,
stream) -> trt.IExecutionContext:
context = self.engine.create_execution_context_without_device_memory()
assert context is not None, "Failed to create an execution context with the provided device memory!"
context.device_memory = address
context.set_optimization_profile_async(profile_idx, stream)
# If nvtx verbosity is DETAILED, change it to LAYER_NAMES_ONLY for inference performance
if context.nvtx_verbosity == trt.ProfilingVerbosity.DETAILED:
context.nvtx_verbosity = trt.ProfilingVerbosity.LAYER_NAMES_ONLY
return context
def _set_profiler(self):
if self.profiler is not None:
return
assert self.context_0 is not None
assert self.context_1 is not None
self.profiler = _Profiler()
self.context_0.profiler = self.profiler
self.context_0.enqueue_emits_profile = False
self.context_1.profiler = self.profiler
self.context_1.enqueue_emits_profile = False
if self.engine.num_optimization_profiles == 2:
assert self.ctx_context is not None
self.ctx_context.profiler = self.profiler
self.ctx_context.enqueue_emits_profile = False
def __prepare(self, mapping: Mapping, engine_buffer):
self.runtime_rank = mapping.rank
local_rank = self.runtime_rank % mapping.gpus_per_node
torch.cuda.set_device(local_rank)
CUASSERT(cudart.cudaSetDevice(local_rank))
self.runtime = trt.Runtime(logger.trt_logger)
self.engine = self.runtime.deserialize_cuda_engine(engine_buffer)
self.input_tensor_names = set()
self.output_tensor_names = set()
for i in range(self.engine.num_io_tensors):
name = self.engine.get_tensor_name(i)
if self.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT:
self.output_tensor_names.add(name)
else:
self.input_tensor_names.add(name)
assert self.engine is not None
# The device_memory_size stores the memory required by the largest profile
address = CUASSERT(cudart.cudaMalloc(self.engine.device_memory_size))[0]
self.address = address
self.profiler = None
self.engine_inspector = self.engine.create_engine_inspector()
# cuda graph ping-pong instances
self.cuda_graph_instances = [None for _ in range(2)]
if not (trt_gte_10() and self.engine.streamable_weights_size):
# engine does not have weight streaming enabled
self.__prepare_execution_contexts()
def __prepare_execution_contexts(self):
self.context_0 = None
self.context_1 = None
self.ctx_context = None
with _scoped_stream() as stream:
if self.engine.num_optimization_profiles == 1:
# At step = 0, context_1 is active
# At step = 1, context_0 is active
# At step = 2, context_1 is active
self.context_0 = self.__create_and_setup_context(
self.address, 0, stream)
self.context_1 = self.__create_and_setup_context(
self.address, 0, stream)
self.ctx_context = self.context_1
elif self.engine.num_optimization_profiles == 2:
# At step = 0, ctx_context is active
# At step = 1, context_0 is active
# At step = 2, context_1 is active
self.ctx_context = self.__create_and_setup_context(
self.address, 0, stream)
self.context_0 = self.__create_and_setup_context(
self.address, 1, stream)
self.context_1 = self.__create_and_setup_context(
self.address, 1, stream)
else:
logger.error(
f"Number of optimization profiles: {self.engine.num_optimization_profiles}"
)
raise NotImplementedError(
"Python runtime only support 1 or 2 optimization profiles, "
"set --multiple_profiles=disable when calling trtllm-build "
"to disable the feature.")
def _set_shape(self, context: trt.IExecutionContext,
shape_dict: Dict[str, List[int]]):
for i in range(self.engine.num_io_tensors):
name = self.engine.get_tensor_name(i)
if name not in shape_dict:
# shape and buffer can be set by calling _set_tensors API
continue
if self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT:
ok = context.set_input_shape(name, shape_dict[name])
dtype = self.engine.get_tensor_dtype(name)
logger.debug(
f"setting input tensor {name} with shape {shape_dict[name]} and type {dtype}"
)
if not ok:
raise ValueError(
f"Couldn't assign {name} with shape {shape_dict[name]}, "
f"engine supports [min, opt, max] = {self.engine.get_tensor_profile_shape(name, context.active_optimization_profile)}"
)
def _set_buffer(self, context: trt.IExecutionContext,
buffer_dict: Dict[str, torch.Tensor]):
for i in range(self.engine.num_io_tensors):
name = self.engine.get_tensor_name(i)
if name not in buffer_dict.keys():
dtype = self.engine.get_tensor_dtype(name)
shape = context.get_tensor_shape(name)
buffer_dict[name] = torch.zeros(tuple(shape),
dtype=trt_dtype_to_torch(dtype),
device='cuda')
assert buffer_dict[name].is_contiguous(
), f"{name} is not contiguous()"
context.set_tensor_address(name, buffer_dict[name].data_ptr())
def _set_tensors(self, context: trt.IExecutionContext,
tensors: Dict[str, "RuntimeTensor"]):
for name in self.input_tensor_names:
# it's allowed to call set_tensors multi times with different tensors
# each time only set some of the engine tensors, so it is valid to skip the ones not in the current given tensors dict
if name not in tensors:
continue
tensor = tensors[name]
if context.get_tensor_address(name) != tensor.data:
context.set_tensor_address(name, tensor.data)
if list(context.get_tensor_shape(name)) != tensor.shape:
context.set_input_shape(name, tensor.shape)
for name in self.output_tensor_names:
if name not in tensors:
dtype = self.engine.get_tensor_dtype(name)
shape = context.get_tensor_shape(name)
tensors[name] = RuntimeTensor.from_torch(
name,
torch.zeros(tuple(shape),
dtype=trt_dtype_to_torch(dtype),
device='cuda'))
t = tensors[name]
# output's shape is inference by TRT, no need to set the shape here
context.set_tensor_address(t.name, t.data)
def _set_weight_streaming(self, gpu_weights_percent):
assert self.engine is not None
self.context_0 = None
self.context_1 = None
self.ctx_context = None
if not trt_gte_10():
assert gpu_weights_percent == 1, "Weight streaming is only supported by TensorRT 10.0 or later."
return
else:
min = self.engine.minimum_weight_streaming_budget
max = self.engine.streamable_weights_size
budget = int(min + gpu_weights_percent * (max - min))
budget_config = budget if gpu_weights_percent != 1 else 0
self.engine.weight_streaming_budget = budget_config
assert self.engine.weight_streaming_budget == budget_config, "Failed to set weight streaming budget!"
logger.info(
f"Set gpu weights percent to {gpu_weights_percent}, which is {budget} bytes. Valid range: {min} bytes ~ {max} bytes."
)
if self.engine.streamable_weights_size:
try:
self.__prepare_execution_contexts()
except:
free_mem = torch.cuda.mem_get_info()[0]
if free_mem < budget:
raise torch.cuda.OutOfMemoryError(
f"Out of Memory: Memory budget is {budget} bytes but only {free_mem} bytes are available on the GPU."
)
raise
def _check_tensors(self, context: trt.IExecutionContext) -> None:
tensors = []
for i in range(self.engine.num_io_tensors):
name = self.engine.get_tensor_name(i)
ptr = context.get_tensor_address(name)
if ptr == 0:
raise RuntimeError(f"Engine I/O tensor {name} is unbound")
shp = list(context.get_tensor_shape(name))
if any([s < 0 for s in shp]): # skip if shape is not available
continue
dt = self.engine.get_tensor_dtype(name)
tdt = trt_dtype_to_torch(dt)
sz = torch.tensor([], dtype=tdt).element_size() * np.prod(shp)
tensors.append((ptr, ptr + sz, name, shp, sz))
tensors.sort() # sort by start address
starts, ends, names, _, _ = zip(*tensors)
starts = torch.tensor(starts)
ends = torch.tensor(ends)
overalps = (torch.nonzero((starts[1:] < ends[:-1]).int()) + 1).squeeze()
if overalps.ndim == 0:
# unsqueeze if there is a single value so it became scalar
overalps = torch.unsqueeze(overalps, 0)
if overalps.numel() > 0:
assert overalps.ndim == 1
for i in list(overalps):
left_name = names[i]
right_name = names[i - 1]
if "key_value" in left_name and "key_value" in right_name: # kv
left_names = left_name.split("_")
right_names = right_name.split("_")
if left_names[-1] == right_names[-1]: # same kv layer
assert (left_names[0] == "past" and right_names[0] == "present") or (
left_names[0] == "present" and right_names[0] == "past"), \
f"Overlap found between {tensors[i]} and {tensors[i-1]}"
continue
logger.warning(
f"TENSOR BUFFER OVERLAP DETECTED: {tensors[i]} and {tensors[i-1]} !!!"
)
return
def _insert_step_to_profiler(self, step: int):
if not self.profiler:
raise RuntimeError("Profiler is disable")
self.profiler.results.append(("step", step))
def _is_profiling(self):
return self.profiler is not None
def _run(self,
context: trt.IExecutionContext,
stream: Union[int, torch.cuda.Stream] = None) -> bool:
if stream is None:
stream = torch.cuda.current_stream().cuda_stream
elif isinstance(stream, torch.cuda.Stream):
stream = stream.cuda_stream
ok = context.execute_async_v3(stream)
return ok
def __del__(self):
try:
if self.address is not None:
cudart.cudaFree(self.address)
except TypeError:
pass
@property
def context_mem_size(self) -> int:
return self.engine.device_memory_size
@dataclass
class ModelConfig:
max_batch_size: int
max_beam_width: int
vocab_size: int
num_layers: int
num_heads: int
num_kv_heads: int
hidden_size: int
gpt_attention_plugin: bool
remove_input_padding: bool = False
model_name: str = ""
paged_kv_cache: bool = False
cross_attention: bool = False
head_size: int = None
has_position_embedding: bool = True
has_token_type_embedding: bool = False
tokens_per_block: int = 64
max_prompt_embedding_table_size: int = 0
quant_mode: QuantMode = QuantMode(0)
gather_context_logits: bool = False
gather_generation_logits: bool = False
dtype: str = ""
lora_plugin: bool = False
lora_target_modules: List[str] = field(default_factory=list)
trtllm_modules_to_hf_modules: dict = None
skip_cross_qkv: bool = False
num_medusa_heads: int = 0
max_medusa_tokens: int = 0
paged_state: bool = True
mamba_conv1d_plugin: bool = True
conv_kernel: int = 0
layer_types: List[str] = field(default_factory=list)
rnn_hidden_size: int = 0
rnn_head_size: int = 0
rnn_conv_dim_size: int = 0
state_size: int = 0
state_dtype: str = ""
gpu_weights_percent: float = 1.0
# ReDrafter
redrafter_num_beams: int = 0
redrafter_draft_len_per_beam: int = 0
@dataclass
class SamplingConfig:
end_id: int
pad_id: int
max_new_tokens: int = field(default=20)
num_beams: int = field(default=1)
max_attention_window_size: Optional[int] = field(default=None)
sink_token_length: Optional[int] = field(default=None)
output_sequence_lengths: bool = field(default=False)
return_dict: bool = field(default=False)
stop_words_list: Optional[torch.Tensor] = field(default=None)
bad_words_list: Optional[torch.Tensor] = field(default=None)
temperature: Union[float, torch.Tensor] = field(default=1.0)
top_k: Union[int, torch.Tensor] = field(default=1)
top_p: Union[float, torch.Tensor] = field(default=0.0)
top_p_decay: Optional[torch.Tensor] = field(default=None) # float
top_p_min: Optional[torch.Tensor] = field(default=None) # float
top_p_reset_ids: Optional[torch.Tensor] = field(default=None) # int
length_penalty: Union[float, torch.Tensor] = field(default=1.0)
early_stopping: Union[int, torch.Tensor] = field(default=1)
repetition_penalty: Union[float, torch.Tensor] = field(default=1.0)
min_length: Union[int, torch.Tensor] = field(default=1)
presence_penalty: Union[float, torch.Tensor] = field(default=0.0)
frequency_penalty: Union[float, torch.Tensor] = field(default=0.0)
use_beam_hyps: bool = field(default=True)
# None here means user didn't set it, and dynamicDecodeOp.cpp take optional value
# The real default value is set in dynamicDecodeOp.cpp when it's None
beam_search_diversity_rate: Union[float, torch.Tensor] = field(init=False,
default=0.0)
random_seed: Union[int, torch.Tensor] = field(init=False, default=None)
output_cum_log_probs: bool = field(init=False, default=False)
output_log_probs: bool = field(init=False, default=False)
no_repeat_ngram_size: Union[int, torch.Tensor] = field(init=False,
default=None)
def update(self, **kwargs):
unused_kwargs = dict()
for key, value in kwargs.items():
if hasattr(self, key):
setattr(self, key, value)
else:
unused_kwargs[key] = value
return unused_kwargs
class LogitsProcessor:
"""
Base class for all logit processors that can be applied during generation.
"""
def __call__(self, step: int, input_ids: torch.Tensor,
scores: torch.Tensor) -> torch.Tensor:
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class LogitsProcessorList(list, LogitsProcessor):
def __call__(self, step: int, input_ids: torch.Tensor,
scores: torch.Tensor) -> torch.Tensor:
for processor in self:
scores = processor(step, input_ids, scores)
return scores
class StoppingCriteria:
"""
Base class for all stopping criteria that can be applied during generation.
"""
def __call__(self, step: int, input_ids: torch.Tensor,
scores: torch.Tensor) -> bool:
raise NotImplementedError("StoppingCriteria needs to be subclassed")
class StoppingCriteriaList(list, StoppingCriteria):
def __call__(self, step: int, input_ids: torch.Tensor,
scores: torch.Tensor) -> bool:
return any(criteria(step, input_ids, scores) for criteria in self)
class RuntimeTensor:
def __init__(self):
self._name = ""
# shape is the one sent to TRT, the actual torch tensor can be larger than the shape
# this is useful when allocating a big KV cache tensor at the beginning and incremental seq length dim of TRT engine's input tensor
self._shape = None
self._torch_tensor = None
@staticmethod
def from_torch(
name: str,
data: torch.Tensor,
override_shape: Optional[Iterable] = None) -> 'RuntimeTensor':
assert (isinstance(data, torch.Tensor))
t = RuntimeTensor()
t._name = name
# need to hold the torch tensor for memory life time
t._torch_tensor = data.contiguous()
torch_shape = list(data.size())
if override_shape is not None:
t._shape = override_shape
assert isinstance(override_shape, list) or isinstance(
override_shape, tuple)
assert all([lambda x: x >= 0 for x in override_shape
]), f"Expect all dimensions >=0, got {override_shape}"
def volume_func(dims):
return reduce(lambda x, y: x * y, dims, 1)
assert volume_func(override_shape) <= volume_func(torch_shape), \
f"Override the shape to be larger than the underlying torch Tensor, got {override_shape}, torch tensor shape {torch_shape}"
else:
t._shape = torch_shape
return t
def to_torch(self) -> torch.Tensor:
return self._torch_tensor
@property
def shape(self) -> Iterable[int]:
return self._shape
@property
def data(self):
return self._torch_tensor.data_ptr()
@property
def name(self) -> str:
return self._name
@property
def dtype(self) -> torch.dtype:
return self._torch_tensor.dtype
class GenerationSession(object):
_model_config: ModelConfig
mapping: Mapping
runtime: _Runtime
device: torch.device
batch_size: int
buffer_allocated: bool
debug_mode: bool
quant_mode: QuantMode
cuda_graph_mode: bool
dtype: trt.DataType
debug_tensors_to_save: None
num_draft_tokens: int = 0
medusa_topks: List[int] = None
medusa_paths: List[List[int]] = None
medusa_tree_ids: List[int] = None
medusa_position_offsets: List[int] = None
medusa_temperature: float = 0.0
def __init__(self,
model_config: ModelConfig,
engine_buffer,
mapping: Mapping,
debug_mode=False,
debug_tensors_to_save=None,
cuda_graph_mode=False,
stream: torch.cuda.Stream = None):
assert isinstance(model_config, ModelConfig)
self._model_config = model_config
self.mapping = mapping
self.runtime = _Runtime(engine_buffer, mapping)
self.device = torch.device(
f'cuda:{self.runtime.runtime_rank % mapping.gpus_per_node}')
torch.cuda.set_device(self.device)
# dynamic_decoder currently use torch's current stream, so must let TRT enqueue use same stream here
self.stream = stream
if self.stream is None:
self.stream = torch.cuda.Stream(self.device)
torch.cuda.set_stream(self.stream)
self.debug_mode = debug_mode
self.debug_tensors_to_save = debug_tensors_to_save
self.cuda_graph_mode = cuda_graph_mode
# Optional inputs for dynamic decoder
self.top_p_decay = None
self.top_p_min = None
self.top_p_reset_ids = None
# TODO: in tensorrt_llm/cpp/tensorrt_llm/thop/dynamicDecodeOp.cpp it's T, can be float or half?
self.embedding_bias_opt = None
# use one more block in paged kv cache.
self.use_one_more_block = False
self.buffer = None
self.buffer_allocated = False
self.vocab_size_padded = pad_vocab_size(self.vocab_size,
self.mapping.tp_size)
if len(model_config.layer_types) == 0:
self.layer_types = ['attention'] * model_config.num_layers
else:
layer_types = model_config.layer_types
layer_types = layer_types * (model_config.num_layers //
len(layer_types))
layer_types = layer_types + layer_types[0:(model_config.num_layers %
len(layer_types))]
self.layer_types = layer_types
self.num_attn_layers = \
self.layer_types[self.first_layer:self.last_layer].count('attention')
self.has_attn_layers = self.num_attn_layers > 0
self.has_rnn_layers = 'recurrent' in self.layer_types[
self.first_layer:self.last_layer]
self.attn_to_general_idx = {}
attn_layer_idx = 0
for i in range(self.first_layer, self.last_layer):
if self.layer_types[i] == 'attention':
self.attn_to_general_idx[attn_layer_idx] = i
attn_layer_idx += 1
if self.paged_kv_cache:
logger.warning(
"The paged KV cache in Python runtime is experimental. For performance and correctness, please, use C++ runtime."
)
if self.mapping.has_pp():
self.nccl_comm = torch.classes.trtllm.NcclCommunicatorOp(
self.mapping.tp_size, self.mapping.pp_size, self.mapping.rank)
if self.mapping.is_last_pp_rank():
self.decoder_logits_dtype = self._tensor_dtype('logits')
if self.decoder_logits_dtype not in [torch.float16, torch.float32]:
logger.warning(
"Logits dtype not supported by decoder. Falling back to float32. You may want to change the logits dtype to float16 in your model definition."
)
self.decoder_logits_dtype = torch.float32
self.dynamic_decoder = torch.classes.trtllm.DynamicDecodeOp(
model_config.max_batch_size, model_config.max_beam_width,
self.vocab_size, self.vocab_size_padded, self.mapping.tp_size,
self.mapping.pp_size, self.decoder_logits_dtype)
if self.mapping.tp_size > 1:
set_peer_access(self.mapping)
self.ipc_buffers, self.all_reduce_workspace = CustomAllReduceHelper.allocate_workspace(
self.mapping,
CustomAllReduceHelper.max_workspace_size_auto(
self.mapping.tp_size))
self.gather_tree = torch.ops.tensorrt_llm.gather_tree
expected_tensor_names = []
if self.mapping.is_first_pp_rank():
expected_tensor_names += ['input_ids']
else:
expected_tensor_names += ['hidden_states_input']
if self.mapping.is_last_pp_rank():
expected_tensor_names += ['logits']
if not model_config.gather_context_logits or self.has_rnn_layers:
expected_tensor_names += ['last_token_ids']
else:
expected_tensor_names += ['hidden_states_output']
if self.has_attn_layers:
if model_config.has_position_embedding and self.mapping.is_first_pp_rank(
):
expected_tensor_names += ['position_ids']
if model_config.has_token_type_embedding and self.mapping.is_first_pp_rank(
):
expected_tensor_names += ['token_type_ids']
expected_tensor_names += ['cache_indirection']
if self.paged_kv_cache and self.has_attn_layers:
expected_tensor_names += [f'kv_cache_block_offsets']
expected_tensor_names += [f'host_kv_cache_block_offsets']
expected_tensor_names += [f'host_kv_cache_pool_pointers']
if self.cross_attention:
expected_tensor_names += [f'cross_kv_cache_block_offsets']
expected_tensor_names += [f'host_cross_kv_cache_block_offsets']
expected_tensor_names += [f'host_cross_kv_cache_pool_pointers']
else:
for i in range(self.first_layer, self.last_layer):
if self.layer_types[i] == 'attention':
expected_tensor_names += [
f'past_key_value_{i}', f'present_key_value_{i}'
]
if model_config.cross_attention:
if model_config.gpt_attention_plugin:
for i in range(self.first_layer, self.last_layer):
if self.layer_types[i] == 'attention':
expected_tensor_names += [
f'cross_present_key_value_{i}',
f'cross_past_key_value_{i}'
]
else:
expected_tensor_names += [
'cross_attention_mask',
]
if self.paged_state and self.has_rnn_layers:
for i in range(self.first_layer, self.last_layer):
if self.layer_types[i] == 'recurrent':
expected_tensor_names += [
f'conv_state_ptr_{i}', f'rnn_state_ptr_{i}'
]
expected_tensor_names += ['slot_mapping']
else:
for i in range(self.first_layer, self.last_layer):
if self.layer_types[i] == 'recurrent':
expected_tensor_names += [
f'past_conv_state_{i}', f'present_conv_state_{i}',
f'past_rnn_state_{i}', f'present_rnn_state_{i}'
]
if model_config.gpt_attention_plugin and self.has_attn_layers:
expected_tensor_names += [
'sequence_length', 'context_lengths', 'host_request_types',
'host_past_key_value_lengths', 'host_sink_token_length',
'host_runtime_perf_knobs'
]
expected_tensor_names += [f'host_max_attention_window_sizes']
if model_config.remove_input_padding:
expected_tensor_names.append('host_context_lengths')
else:
if self.has_rnn_layers:
expected_tensor_names += ['host_request_types']
if model_config.mamba_conv1d_plugin and model_config.remove_input_padding:
expected_tensor_names.append('host_context_lengths')
if self.has_attn_layers:
expected_tensor_names += ['attention_mask']
if model_config.max_prompt_embedding_table_size > 0:
expected_tensor_names += [
'prompt_embedding_table', 'tasks', 'prompt_vocab_size'
]
if model_config.cross_attention:
expected_tensor_names += [
'encoder_output',
'encoder_input_lengths',
'encoder_max_input_length',
'cross_kv_cache_gen',
]
self.skip_cross_qkv = model_config.skip_cross_qkv
if self.skip_cross_qkv:
expected_tensor_names += ['cross_qkv_reuse']
if self.mapping.tp_size > 1:
expected_tensor_names += ['all_reduce_workspace']
self.lora_target_modules = model_config.lora_target_modules
self.missing_qkv_modules = LoraManager.get_missing_qkv_modules(
self.lora_target_modules)
if model_config.lora_plugin:
for lora_module in (self.lora_target_modules +
self.missing_qkv_modules):
for i in range(self.first_layer, self.last_layer):
expected_tensor_names += [
f'{lora_module}_lora_ranks_{i}',
f'{lora_module}_lora_weights_pointers_{i}'
]
if self.cross_attention and self.remove_input_padding:
expected_tensor_names += ['host_encoder_input_lengths']
if model_config.num_medusa_heads > 0:
expected_tensor_names += [
'spec_decoding_generation_lengths',
'spec_decoding_position_offsets', 'spec_decoding_packed_mask',
'medusa_logits'
]
if self.is_redrafter_mode:
expected_tensor_names += get_redrafter_tensor_names()
found_tensor_names = [
self.runtime.engine.get_tensor_name(i)
for i in range(self.runtime.engine.num_io_tensors)
]
if not self.debug_mode and set(expected_tensor_names) != set(
found_tensor_names):
logger.error(
f"The following expected tensors are not found: {set(expected_tensor_names).difference(set(found_tensor_names))}"
)
logger.error(
f"Those tensors in engine are not expected: {set(found_tensor_names).difference(set(expected_tensor_names))}"
)
logger.error(f"Expected tensor names: {expected_tensor_names}")
logger.error(f"Found tensor names: {found_tensor_names}")
raise RuntimeError(
"Tensor names in engine are not the same as expected, to use this GenerationSession, "
"you need to use PretrainedModel.prepare_inputs to create TRT Network inputs."
)
if self.debug_mode:
self.debug_tensors = list(
set(found_tensor_names) - set(expected_tensor_names))
if self.debug_tensors_to_save is None:
self.debug_tensors_to_save = self.debug_tensors
logger.info(f"Debug tensors found: {self.debug_tensors}")
logger.info(f"Debug tensors to save: {self.debug_tensors_to_save}")
@property
def context_mem_size(self) -> int:
return self.runtime.context_mem_size
@property
def vocab_size(self):
return self._model_config.vocab_size
@property
def num_layers(self):
assert self._model_config.num_layers % self.mapping.pp_size == 0, \
f"num_layers {self._model_config.num_layers} must be a multiple of pipeline parallelism size {self.mapping.pp_size}"
return self._model_config.num_layers // self.mapping.pp_size
@property
def first_layer(self):
return self.num_layers * self.mapping.pp_rank
@property
def last_layer(self):
return self.first_layer + self.num_layers
@property
def num_heads(self):
return self._model_config.num_heads
@property
def hidden_size(self):
return self._model_config.hidden_size
@property
def use_gpt_attention_plugin(self):
return self._model_config.gpt_attention_plugin
@property
def use_mamba_conv1d_plugin(self):
return self._model_config.mamba_conv1d_plugin
@property
def paged_kv_cache(self):
return self._model_config.paged_kv_cache
@property
def tokens_per_block(self):
return self._model_config.tokens_per_block
@property
def remove_input_padding(self):
return self._model_config.remove_input_padding
@property
def num_heads_kv(self):
return self._model_config.num_kv_heads
@property
def head_size(self):
return self.hidden_size // self.num_heads if self._model_config.head_size is None else self._model_config.head_size
@property
def max_prompt_embedding_table_size(self):
return self._model_config.max_prompt_embedding_table_size
@property
def quant_mode(self):
return self._model_config.quant_mode
@property
def gather_context_logits(self):
return self._model_config.gather_context_logits
@property
def gather_generation_logits(self):
return self._model_config.gather_generation_logits
@property
def dtype(self):
return str_dtype_to_torch(self._model_config.dtype)
@property
def profiler(self):
return self.runtime.profiler
@property
def engine_inspector(self):
return self.runtime.engine_inspector
def cuda_stream_guard(func):
"""Sync external stream and set current stream to the one bound to the session. Reset on exit.
"""
@wraps(func)
def wrapper(self, *args, **kwargs):
external_stream = torch.cuda.current_stream()
if external_stream != self.stream:
external_stream.synchronize()
torch.cuda.set_stream(self.stream)
ret = func(self, *args, **kwargs)
if external_stream != self.stream:
self.stream.synchronize()
torch.cuda.set_stream(external_stream)
return ret
return wrapper
@property
def cross_attention(self):
return self._model_config.cross_attention
@property
def has_position_embedding(self):
return self._model_config.has_position_embedding
@property
def has_token_type_embedding(self):
return self._model_config.has_token_type_embedding
@property
def use_lora_plugin(self):
return self._model_config.lora_plugin
@property
def is_medusa_mode(self):
return self.num_medusa_heads > 0
@property
def is_redrafter_mode(self):
return self._model_config.redrafter_num_beams > 0 and self._model_config.redrafter_draft_len_per_beam > 0
@property
def max_draft_tokens(self):
if self.is_redrafter_mode:
return self._model_config.redrafter_num_beams * self._model_config.redrafter_draft_len_per_beam
return self._model_config.max_medusa_tokens
@property
def num_medusa_heads(self):
return self._model_config.num_medusa_heads
@property
def paged_state(self):
return self._model_config.paged_state
@property
def conv_kernel(self):
return self._model_config.conv_kernel
@property
def rnn_hidden_size(self):
return self._model_config.rnn_hidden_size
@property
def rnn_head_size(self):
return self._model_config.rnn_head_size
@property
def rnn_conv_dim_size(self):
return self._model_config.rnn_conv_dim_size
@property
def state_size(self):
return self._model_config.state_size
@property
def state_dtype(self):
if self._model_config.state_dtype == "":
return str_dtype_to_torch(self._model_config.dtype)
return str_dtype_to_torch(self._model_config.state_dtype)
def _capture_cuda_graph_and_instantiate(self, context, stream, step):
instance_idx = (step + 1) % 2
if not self.has_attn_layers:
# Create two cuda graph once.If cuda graph has already existed, skip it.
if self.runtime.cuda_graph_instances[instance_idx] is not None:
return
# WAR for TRT 9.x
if not trt_gte_10() and step < 3:
return
# capture cuda graph
CUASSERT(
cudart.cudaStreamBeginCapture(
stream,
cudart.cudaStreamCaptureMode.cudaStreamCaptureModeGlobal))
context.execute_async_v3(stream)
next_graph = CUASSERT(cudart.cudaStreamEndCapture(stream))[0]
if self.runtime.cuda_graph_instances[instance_idx] is not None:
self.runtime.cuda_graph_instances[
instance_idx] = _update_cuda_graph_instance(
self.runtime.cuda_graph_instances[instance_idx], next_graph)
else:
self.runtime.cuda_graph_instances[instance_idx] = CUASSERT(
cudart.cudaGraphInstantiate(next_graph, 0))[0]
# Pre-upload cuda graph to stream
CUASSERT(
cudart.cudaGraphUpload(
self.runtime.cuda_graph_instances[instance_idx], stream))
def __setup_decoder(self, input_ids: torch.Tensor,
sampling_config: SamplingConfig,
host_context_lengths: torch.Tensor):
'''Allocate buffers and setup the post-processing decoder kernel
'''
batch_size = host_context_lengths.shape[0]
scfg = sampling_config # just to make a shorter name, no other meaning
if isinstance(scfg.top_k, torch.Tensor):
assert scfg.top_k.dtype == torch.int32, f"scfg.top_k.dtype ({scfg.top_k.dtype}) must be torch.int32"
assert scfg.top_k.shape[
0] == batch_size, f"scfg.top_k.shape[0] ({scfg.top_k.shape[0]}) must equal to batch_size ({batch_size})"
self.top_k = scfg.top_k
else:
self.top_k = torch.full([batch_size], scfg.top_k, dtype=torch.int32)
if isinstance(scfg.top_p, torch.Tensor):
assert scfg.top_p.dtype == torch.float32, f"scfg.top_p.dtype ({scfg.top_p.dtype}) must be torch.float32"
assert scfg.top_p.shape[
0] == batch_size, f"scfg.top_p.shape[0] ({scfg.top_p.shape[0]}) must equal to batch_size ({batch_size})"
self.top_p = scfg.top_p
else:
self.top_p = torch.full([batch_size],
scfg.top_p,
dtype=torch.float32)
if isinstance(scfg.temperature, torch.Tensor):
assert scfg.temperature.dtype == torch.float32, f"scfg.temperature.dtype ({scfg.temperature.dtype}) must be torch.float32"
assert scfg.temperature.shape[
0] == batch_size, f"scfg.temperature.shape[0] ({scfg.temperature.shape[0]}) must equal to batch_size ({batch_size})"
self.temperature = scfg.temperature
else:
self.temperature = torch.full([batch_size],
scfg.temperature,
dtype=torch.float32)
if isinstance(scfg.repetition_penalty, torch.Tensor):
assert scfg.repetition_penalty.dtype == torch.float32, f"scfg.repetition_penalty.dtype ({scfg.repetition_penalty.dtype}) must be torch.float32"
assert scfg.repetition_penalty.shape[
0] == batch_size, f"scfg.repetition_penalty.shape[0] ({scfg.repetition_penalty.shape[0]}) must equal to batch_size ({batch_size})"
self.repetition_penalty = scfg.repetition_penalty
elif scfg.repetition_penalty == 1.0:
self.repetition_penalty = None
else:
self.repetition_penalty = torch.full([batch_size],
scfg.repetition_penalty,
dtype=torch.float32)
if isinstance(scfg.length_penalty, torch.Tensor):
assert scfg.length_penalty.dtype == torch.float32, f"scfg.length_penalty.dtype ({scfg.length_penalty.dtype}) must be torch.float32"
assert scfg.length_penalty.shape[
0] == batch_size, f"scfg.length_penalty.shape[0] ({scfg.length_penalty.shape[0]}) must equal to batch_size ({batch_size})"
self.host_length_penalty = scfg.length_penalty
else:
self.host_length_penalty = torch.full([batch_size],
scfg.length_penalty,
dtype=torch.float32)
self.length_penalty = self.host_length_penalty.to(self.device)
if isinstance(scfg.early_stopping, torch.Tensor):
assert scfg.early_stopping.dtype == torch.int32, f"scfg.early_stopping.dtype ({scfg.early_stopping.dtype}) must be torch.int32"
assert scfg.early_stopping.shape[
0] == batch_size, f"scfg.early_stopping.shape[0] ({scfg.early_stopping.shape[0]}) must equal to batch_size ({batch_size})"
self.host_early_stopping = scfg.early_stopping
else:
self.host_early_stopping = torch.full([batch_size],
scfg.early_stopping,
dtype=torch.int32)
if isinstance(scfg.presence_penalty, torch.Tensor):
assert scfg.presence_penalty.dtype == torch.float32, f"scfg.presence_penalty.dtype ({scfg.presence_penalty.dtype}) must be torch.float32"
assert scfg.presence_penalty.shape[
0] == batch_size, f"scfg.presence_penalty.shape[0] ({scfg.presence_penalty.shape[0]}) must equal to batch_size ({batch_size})"
self.presence_penalty = scfg.presence_penalty
elif scfg.presence_penalty == 0.0:
self.presence_penalty = None
else:
self.presence_penalty = torch.full([batch_size],
scfg.presence_penalty,
dtype=torch.float32)
if isinstance(scfg.frequency_penalty, torch.Tensor):
assert scfg.frequency_penalty.dtype == torch.float32, f"scfg.frequency_penalty.dtype ({scfg.frequency_penalty.dtype}) must be torch.float32"
assert scfg.frequency_penalty.shape[
0] == batch_size, f"scfg.frequency_penalty.shape[0] ({scfg.frequency_penalty.shape[0]}) must equal to batch_size ({batch_size})"
self.frequency_penalty = scfg.frequency_penalty
elif scfg.frequency_penalty == 0.0:
self.frequency_penalty = None
else:
self.frequency_penalty = torch.full([batch_size],
scfg.frequency_penalty,
dtype=torch.float32)
if isinstance(scfg.min_length, torch.Tensor):
assert scfg.min_length.dtype == torch.int32, f"scfg.min_length.dtype ({scfg.min_length.dtype}) must be torch.int32"
assert scfg.min_length.shape[
0] == batch_size, f"scfg.min_length.shape[0] ({scfg.min_length.shape[0]}) must equal to batch_size ({batch_size})"
self.min_length = scfg.min_length
else:
self.min_length = torch.full([batch_size],
scfg.min_length,
dtype=torch.int32)
if isinstance(scfg.beam_search_diversity_rate, torch.Tensor):
assert scfg.beam_search_diversity_rate.dtype == torch.float32, f"scfg.beam_search_diversity_rate.dtype ({scfg.beam_search_diversity_rate.dtype}) must be torch.float32"
assert scfg.beam_search_diversity_rate.shape[
0] == batch_size, f"scfg.beam_search_diversity_rate.shape[0] ({scfg.beam_search_diversity_rate.shape[0]}) must equal to batch_size ({batch_size})"
self.beam_search_diversity_rate = scfg.beam_search_diversity_rate
elif scfg.beam_search_diversity_rate is not None:
self.beam_search_diversity_rate = torch.full(
[batch_size],
scfg.beam_search_diversity_rate,
dtype=torch.float32)
else:
self.beam_search_diversity_rate = None
if isinstance(scfg.random_seed, torch.Tensor):
assert scfg.random_seed.dtype == torch.int64, f"scfg.random_seed.dtype ({scfg.random_seed.dtype}) must be torch.int64"
assert scfg.random_seed.shape[
0] == batch_size, f"scfg.random_seed.shape[0] ({scfg.random_seed.shape[0]}) must equal to batch_size ({batch_size})"
self.random_seed = scfg.random_seed
elif scfg.random_seed is not None:
self.random_seed = torch.full([batch_size],
scfg.random_seed,
dtype=torch.int64)
else:
self.random_seed = None
if isinstance(scfg.no_repeat_ngram_size, torch.Tensor):
assert scfg.no_repeat_ngram_size.dtype == torch.int32, f"scfg.no_repeat_ngram_size.dtype ({scfg.no_repeat_ngram_size.dtype}) must be torch.int32"
assert scfg.no_repeat_ngram_size.shape[
0] == batch_size, f"scfg.no_repeat_ngram_size.shape[0] ({scfg.no_repeat_ngram_size.shape[0]}) must equal to batch_size ({batch_size})"
self.no_repeat_ngram_size = scfg.no_repeat_ngram_size
elif scfg.no_repeat_ngram_size is not None:
self.no_repeat_ngram_size = torch.full([batch_size],
scfg.no_repeat_ngram_size,
dtype=torch.int32)
else:
self.no_repeat_ngram_size = None
if self.mapping.is_last_pp_rank():
self.dynamic_decoder.setup(
batch_size, scfg.num_beams, self.top_k, self.top_p,
self.temperature, self.repetition_penalty,
self.presence_penalty, self.frequency_penalty, self.min_length,
self.host_length_penalty, self.host_early_stopping,
self.beam_search_diversity_rate, self.random_seed,
self.top_p_decay, self.top_p_min, self.top_p_reset_ids,
self.no_repeat_ngram_size, scfg.output_log_probs,
scfg.num_beams > 1 or scfg.output_cum_log_probs)
assert scfg.end_id is not None, "end_id cannot be none"
assert scfg.pad_id is not None, 'pad_id cannot be none'
self.end_ids = torch.full((batch_size * scfg.num_beams, ),
scfg.end_id,
dtype=torch.int32,
device=self.device)
max_context_length = host_context_lengths.max()
# setup output ids buffer
if input_ids.dim() == 1:
# input_ids only have one dimension, which means remove_padding is enabled
split_ids_list = list(
torch.split(input_ids.unsqueeze(0),
host_context_lengths.numpy().tolist(),
dim=1))
padded_input_ids = torch.nested.to_padded_tensor(
torch.nested.nested_tensor(split_ids_list,
dtype=torch.int32,
device='cuda'),
scfg.pad_id).reshape(batch_size, max_context_length)
else:
padded_input_ids = input_ids
if scfg.num_beams > 1:
tiled_input_ids = _tile_beam_width(padded_input_ids, scfg.num_beams)
tiled_input_ids = tiled_input_ids.reshape(batch_size,
scfg.num_beams,
max_context_length)
tiled_input_ids.permute(2, 0, 1) # TODO: delete?
self.output_ids = torch.cat(
(tiled_input_ids,
torch.full((batch_size, scfg.num_beams,
self.max_seq_length - max_context_length),
scfg.end_id,
dtype=padded_input_ids.dtype,
device=padded_input_ids.device)),
axis=-1)
else:
self.output_ids = torch.cat(
(padded_input_ids,
torch.full(
(batch_size, self.max_seq_length - max_context_length),
scfg.end_id,
dtype=padded_input_ids.dtype,
device=padded_input_ids.device)),
axis=-1)
# Note: we still allocate max_seq_length size of parent ids (not max_attention_window_size).
self.parent_ids = torch.zeros(
(batch_size, scfg.num_beams, self.max_seq_length),
dtype=torch.int32,
device=self.device)
if self.is_redrafter_mode:
self.new_tokens = torch.zeros([
batch_size, self._model_config.redrafter_draft_len_per_beam + 1
],
dtype=torch.int32,
device=self.device)
self.accept_lengths = torch.ones([batch_size],
dtype=torch.int32,
device=self.device)
self.buffer["redrafter_inverted_temperature"] = torch.reciprocal(
self.temperature).to(device=self.device, dtype=self.dtype)
elif self.is_medusa_mode:
self.new_tokens = torch.zeros(
[batch_size, self.num_medusa_heads + 1],
dtype=torch.int32,
device=self.device)
self.medusa_output_tokens = torch.zeros(
[batch_size, self.num_draft_tokens],
dtype=torch.int32,
device=self.device)
self.generation_input_ids = torch.zeros(
[batch_size, self.num_draft_tokens + 1],
dtype=torch.int32,
device=self.device)
self.accept_lengths = torch.ones([batch_size],
dtype=torch.int32,
device=self.device)
if self.medusa_temperature != 0:
self.medusa_output_logits = torch.empty(
[batch_size, self.num_medusa_heads, self.vocab_size_padded],
dtype=self._tensor_dtype('logits'),
device=self.device)
elif scfg.num_beams > 1:
self.new_tokens = torch.zeros([batch_size, scfg.num_beams, 1],
dtype=torch.int32,
device=self.device)
else:
self.new_tokens = torch.zeros([batch_size, 1],
dtype=torch.int32,
device=self.device)
if scfg.num_beams > 1 or scfg.output_cum_log_probs:
self.cum_log_probs = torch.full((batch_size, scfg.num_beams),
-1e20,
dtype=torch.float32,
device=self.device)
self.cum_log_probs[:, 0] = 0.0
else:
self.cum_log_probs = None
if scfg.output_log_probs:
self.log_probs = torch.zeros(
(batch_size, scfg.num_beams, self.max_seq_length),
dtype=torch.float32,
device=self.device)
self.log_probs_tiled = torch.zeros(
(self.max_seq_length, self._model_config.max_batch_size,
scfg.num_beams),
dtype=torch.float32,
device=self.device)
else:
self.log_probs = None
self.log_probs_tiled = None
self.finished = torch.zeros((batch_size, scfg.num_beams),
dtype=torch.uint8,
device=self.device)
if scfg.use_beam_hyps:
self.beam_hyps_output_ids_cba = torch.full(
size=[batch_size, scfg.num_beams * 2, self.max_seq_length],
fill_value=scfg.end_id,
dtype=torch.int32,
device=self.device)
self.beam_hyps_seq_len_cba = torch.zeros(
[batch_size, scfg.num_beams * 2],
dtype=torch.int32,
device=self.device)
self.beam_hyps_cum_log_probs_cba = torch.zeros(
[batch_size, scfg.num_beams * 2],
dtype=torch.float,
device=self.device)
self.beam_hyps_normed_scores_cba = torch.zeros(
[batch_size, scfg.num_beams * 2],
dtype=torch.float,
device=self.device)
self.beam_hyps_log_probs_cba = torch.zeros(
[batch_size, scfg.num_beams * 2, self.max_seq_length],
dtype=torch.float,
device=self.device)
self.beam_hyps_min_normed_scores = torch.zeros([batch_size],
dtype=torch.float,
device=self.device)
self.beam_hyps_num_beams = torch.zeros([batch_size],
dtype=torch.int32,
device=self.device)
self.beam_hyps_is_done = torch.zeros([batch_size],
dtype=torch.bool,
device=self.device)
else:
self.beam_hyps_output_ids_cba = None
self.beam_hyps_seq_len_cba = None
self.beam_hyps_cum_log_probs_cba = None
self.beam_hyps_normed_scores_cba = None
self.beam_hyps_log_probs_cba = None
self.beam_hyps_min_normed_scores = None
self.beam_hyps_num_beams = None
self.beam_hyps_is_done = None
self.cross_qkv_reuse = None
def _tensor_dtype(self, name):
# return torch dtype given tensor name for convenience
dtype = trt_dtype_to_torch(self.runtime.engine.get_tensor_dtype(name))
return dtype
def _init_medusa(self, medusa_choices: List[List[int]]):
from tensorrt_llm.runtime.medusa_utils import (_medusa_setup,
expand_choices_if_needed)
medusa_choices = expand_choices_if_needed(medusa_choices)
self.num_draft_tokens = len(medusa_choices)
assert self.num_draft_tokens > 0 and self.num_draft_tokens <= self.max_draft_tokens
medusa_info = _medusa_setup(medusa_choices, self.num_medusa_heads)
self.medusa_topks = medusa_info.medusa_topks
self.medusa_mask = medusa_info.medusa_mask[1:, 1:].to(
torch.bool
) # convert to bool, original mask includes true token as well
# Expand medusa position offsets to number of batch size in order to be compatible with the new Medusa.
target_shape = list(medusa_info.medusa_packed_mask.unsqueeze(0).shape)
target_shape[0] = self.batch_size
# Note: spec_decoding_packed_mask has no paddings in the first dimension.
self.spec_decoding_packed_mask = medusa_info.medusa_packed_mask.unsqueeze(
0).expand(target_shape).reshape(-1, target_shape[-1]).cuda()
self.medusa_paths = medusa_info.medusa_paths
self.medusa_tree_ids = medusa_info.medusa_tree_ids
# Expand medusa position offsets to number of batch size in order to be compatible with the new Medusa.
target_shape = list(
medusa_info.medusa_position_offsets.unsqueeze(0).shape)
target_shape[0] = self.batch_size
# Note: medusa_position_offsets still keeps the paddings in order to get max_gen_input_length from the shape info.
self.spec_decoding_position_offsets = medusa_info.medusa_position_offsets.unsqueeze(
0).expand(target_shape).int().cuda()
# Fixed sequence lengths currently.
# Support variable sequence lengths later.
self.spec_decoding_generation_lengths = (torch.ones(
(self.batch_size)) * (self.num_draft_tokens + 1)).int().cuda()
if not self.use_gpt_attention_plugin:
medusa_fp_mask = torch.zeros_like(self.medusa_mask,
dtype=torch.float32)
medusa_fp_mask[torch.logical_not(self.medusa_mask)] = float('-inf')
self.medusa_mask = medusa_fp_mask
return
def _get_num_paged_blocks(self, max_attention_window_size,
sink_token_length, use_one_more_block):
bubble_len = 0
if sink_token_length % self.tokens_per_block > 0:
bubble_len += (self.tokens_per_block -
sink_token_length % self.tokens_per_block)
max_blocks_per_seq = math.ceil(
(max_attention_window_size + bubble_len) / self.tokens_per_block)
if use_one_more_block:
max_blocks_per_seq += 1
num_blocks = self.batch_size * self.beam_width * max_blocks_per_seq
return num_blocks, max_blocks_per_seq
def setup(self,
batch_size: int,
max_context_length: int,
max_new_tokens: int,
beam_width: int = 1,
max_attention_window_size: Optional[int] = None,
sink_token_length: Optional[int] = None,
encoder_max_input_length: Optional[int] = None,
lora_manager: LoraManager = None,
lora_uids: List[str] = None,
medusa_choices: List[List[int]] = None,
multi_block_mode: bool = None):
# Store these params related to buffer size to check against
# the input shape with the params given in decode()
self.batch_size = batch_size
self.max_context_length = max_context_length
self.max_new_tokens = max_new_tokens
self.max_seq_length = max_context_length + max_new_tokens
if medusa_choices is not None or self.is_redrafter_mode:
self.max_seq_length += self.max_draft_tokens
self.beam_width = beam_width
self.encoder_max_input_length = encoder_max_input_length
self.multi_block_mode = multi_block_mode
if max_attention_window_size is None:
self.max_attention_window_size = self.max_seq_length
logger.debug(
"The max_attention_window_size is not set, we will use max_seq_length by default."
)
self.host_max_attention_window_sizes = torch.ones(
(self.num_attn_layers, ),
dtype=torch.int32) * self.max_attention_window_size
elif isinstance(max_attention_window_size, int):
if max_attention_window_size > self.max_seq_length:
logger.warning(
"The value of max_attention_window_size should ideally not exceed max_seq_length. "
"Therefore, it has been adjusted to match the value of max_seq_length."
)
self.max_attention_window_size = min(max_attention_window_size,
self.max_seq_length)
self.host_max_attention_window_sizes = torch.ones(
(self.num_attn_layers, ),
dtype=torch.int32) * self.max_attention_window_size
elif isinstance(max_attention_window_size, torch.Tensor):
self.max_attention_window_size = int(
torch.max(max_attention_window_size).item())
if self.max_attention_window_size > self.max_seq_length:
logger.warning(
"The value of max_attention_window_size should ideally not exceed max_seq_length. "
"Therefore, it has been adjusted to match the value of max_seq_length."
)
self.max_attention_window_size = min(self.max_attention_window_size,
self.max_seq_length)
if max_attention_window_size.shape[0] != self.num_attn_layers:
logger.error(
"max_attention_window_size tensor's size is not equal to num_layers! "
"Note that num_layers = num_total_layers // pipeline_parallelism_size."
)
assert False
self.host_max_attention_window_sizes = torch.minimum(
max_attention_window_size.to(torch.int32),
torch.IntTensor([self.max_seq_length] * self.num_attn_layers))
else:
assert False, "invalid max_attention_window_size!"
if sink_token_length is None:
self.sink_token_length = 0
self.host_sink_token_length = torch.zeros((1, ), dtype=torch.int32)
elif isinstance(sink_token_length, int):
self.sink_token_length = sink_token_length
self.host_sink_token_length = torch.ones(
(1, ), dtype=torch.int32) * self.sink_token_length
else:
assert False, "invalid sink_token_length!"
self.use_one_more_block = (
self.paged_kv_cache and beam_width > 1
and self.max_seq_length > self.max_attention_window_size)
self.lora_manager = lora_manager
if medusa_choices is not None:
self._init_medusa(medusa_choices)
self.buffer = {}
if self.mapping.is_last_pp_rank():
if self.is_redrafter_mode:
init_allocate_redrafter_tensors(self, batch_size)
self.buffer['logits'] = torch.empty(
(batch_size, self.max_draft_tokens + 1,
self.vocab_size_padded)
if not self.gather_context_logits else
(batch_size, max_context_length, self.vocab_size_padded),
dtype=self._tensor_dtype('logits'),
device=self.device)
elif self.is_medusa_mode:
self.buffer['logits'] = torch.empty(
(batch_size, self.num_draft_tokens + 1,
self.vocab_size_padded)
if not self.gather_context_logits else
(batch_size, max_context_length, self.vocab_size_padded),
dtype=self._tensor_dtype('logits'),
device=self.device)
medusa_logits_shape = (self.num_medusa_heads, batch_size,
(self.num_draft_tokens + 1),
self.vocab_size_padded)
if self.remove_input_padding:
medusa_logits_shape = (self.num_medusa_heads, batch_size *
(self.num_draft_tokens + 1),
self.vocab_size_padded)
self.buffer['medusa_logits'] = torch.empty(
medusa_logits_shape if not self.gather_context_logits else
(self.num_medusa_heads, batch_size, max_context_length,
self.vocab_size_padded),
dtype=self._tensor_dtype('medusa_logits'),
device=self.device)
else:
self.buffer['logits'] = torch.empty(
(batch_size, self.vocab_size_padded)
if not self.gather_context_logits else
(batch_size, max_context_length, self.vocab_size_padded),
dtype=self._tensor_dtype('logits'),
device=self.device)
if self.cross_attention:
# use shape info to pass max length info in remove padding mode
self.buffer['encoder_max_input_length'] = torch.empty(
(encoder_max_input_length, ),
dtype=self._tensor_dtype('encoder_max_input_length'),
device=self.device)
if self.quant_mode.has_kv_cache_quant():
# Since torch does not support fp8 now, using int8 here.
kv_cache_type = torch.int8
else:
if self.has_attn_layers:
first_atten_layer = self.layer_types[
self.first_layer:self.last_layer].index(
'attention') + self.first_layer
kv_cache_type = self.dtype if self.paged_kv_cache else self._tensor_dtype(
f'present_key_value_{first_atten_layer}')
else:
kv_cache_type = None
if self.paged_kv_cache and self.has_attn_layers:
num_blocks, _ = self._get_num_paged_blocks(
self.max_attention_window_size, self.sink_token_length,
self.use_one_more_block)
cache_shape = (
num_blocks,
self.num_attn_layers,
2,
self.num_heads_kv,
self.tokens_per_block,
self.head_size,
)
self.kv_cache_pool = torch.empty(cache_shape,
dtype=kv_cache_type,
device=self.device)
if self.cross_attention: # As for now we enable cross paged kv and self paged kv to share the same tokens_per_block
cross_num_blocks, _ = self._get_num_paged_blocks(
self.encoder_max_input_length,
sink_token_length=0,
use_one_more_block=False)
cross_cache_shape = (
cross_num_blocks,
self.num_layers,
2,
self.num_heads_kv,
self.tokens_per_block,
self.head_size,
)
self.cross_kv_cache_pool = torch.empty(cross_cache_shape,
dtype=kv_cache_type,
device=self.device)
elif self.has_attn_layers:
cache_shape = (
batch_size,
2,
self.num_heads_kv,
self.max_attention_window_size,
self.head_size,
)
for i in range(self.first_layer, self.last_layer):
if self.layer_types[i] == 'attention':
self.buffer[f'present_key_value_{i}'] = torch.empty(
cache_shape, dtype=kv_cache_type, device=self.device)
if self.cross_attention:
cross_cache_shape = (
batch_size,
2,
self.num_heads_kv,
self.encoder_max_input_length,
self.head_size,
)
for i in range(self.first_layer, self.last_layer):
if self.layer_types[i] == 'attention':
self.buffer[
f'cross_present_key_value_{i}'] = torch.empty(
cross_cache_shape,
dtype=kv_cache_type,
device=self.device)
if self.use_gpt_attention_plugin:
self.sequence_length_buffer = torch.ones((batch_size, ),
dtype=torch.int32,
device=self.device)
else:
# Without plugin, we need extra kv cache buffers.
# Because we don't support inplace update, so we need separate buffer for inputs and outputs.
# We can do reuse between different layers' inputs and outputs, i.e. current layer's output can
# reuse previous layer's input memory. But this need one extra buffer as the guard.
if self.has_attn_layers: # Not applicable to cross KV buffers as it's constant
i = self.attn_to_general_idx[0]
trt_dtype = self.runtime.engine.get_tensor_dtype(
f'present_key_value_{i}')
if trt_dtype == trt.fp8:
# PyTorch doesn't support fp8 datatype, use int8 instead of it because int8 datatype size is same with fp8.
# TODO: Remove this section when PyTorch support fp8 datatype
dtype = torch.int8
else:
dtype = self._tensor_dtype(f'present_key_value_{i}')
self.buffer[f'1_present_key_value_{i}'] = torch.empty(
cache_shape, dtype=dtype, device=self.device)
if self.use_mamba_conv1d_plugin:
conv_state_shape = (
batch_size,
self.conv_kernel - 1,
self.rnn_conv_dim_size,
)
else:
conv_state_shape = (
batch_size,
self.rnn_conv_dim_size,
self.conv_kernel - 1,
)
if self.rnn_head_size > 1:
rnn_state_shape = (
batch_size,
self.rnn_hidden_size // self.rnn_head_size,
self.state_size,
self.rnn_head_size,
)
else:
rnn_state_shape = (
batch_size,
self.state_size,
self.rnn_hidden_size,
)
for i in range(self.first_layer, self.last_layer):
if self.layer_types[i] == 'recurrent':
dtype = self.dtype
self.buffer[f'present_conv_state_{i}'] = torch.empty(
conv_state_shape, dtype=dtype, device=self.device)
self.buffer[f'1_present_conv_state_{i}'] = torch.empty(
conv_state_shape, dtype=dtype, device=self.device)
self.buffer[f'present_rnn_state_{i}'] = torch.empty(
rnn_state_shape, dtype=self.state_dtype, device=self.device)
if self.paged_state:
conv_state_ptr = torch.tensor(
[self.buffer[f'present_conv_state_{i}'].data_ptr()],
dtype=torch.int64,
device='cpu')
rnn_state_ptr = torch.tensor(
[self.buffer[f'present_rnn_state_{i}'].data_ptr()],
dtype=torch.int64,
device='cpu')
self.buffer[f'conv_state_ptr_{i}'] = conv_state_ptr
self.buffer[f'rnn_state_ptr_{i}'] = rnn_state_ptr
if self.use_lora_plugin and self.lora_manager is not None:
lora_uids = lora_uids or ["-1"]
self.buffer.update(
self.lora_manager.input_buffers(
lora_uids,
self.mapping,
self._model_config.num_layers,
))
if self.is_medusa_mode:
self.buffer[
'spec_decoding_packed_mask'] = self.spec_decoding_packed_mask
self.buffer[
'spec_decoding_position_offsets'] = self.spec_decoding_position_offsets
self.buffer[
'spec_decoding_generation_lengths'] = self.spec_decoding_generation_lengths
self.buffer_allocated = True
if self.is_medusa_mode:
return self.num_draft_tokens
def _get_context_shape_buffer(
self,
input_ids: torch.Tensor,
context_lengths: torch.Tensor,
host_context_lengths: torch.Tensor,
position_ids: torch.Tensor,
last_token_ids: torch.Tensor,
attention_mask: torch.Tensor,
cross_attention_mask: torch.Tensor,
cache_indirection: torch.Tensor,
kv_cache_block_offsets: torch.Tensor,
host_kv_cache_block_offsets: torch.Tensor,
cross_kv_cache_block_offsets: torch.Tensor = None,
host_cross_kv_cache_block_offsets: torch.Tensor = None,
hidden_states_input: torch.Tensor = None,
prompt_embedding_table: torch.Tensor = None,
tasks: torch.Tensor = None,
prompt_vocab_size: torch.Tensor = None,
encoder_output: torch.Tensor = None,
encoder_input_lengths: torch.Tensor = None,
host_runtime_perf_knobs: torch.Tensor = None
) -> List[RuntimeTensor]:
tensors = {}
def sym(x, name):
return RuntimeTensor.from_torch(name, x)
def add_tensor(x, name):
return tensors.update({name: sym(x, name)})
def add_tensor_with_shape(x, name, shape):
return tensors.update(
{name: RuntimeTensor.from_torch(name, x, override_shape=shape)})
def add_tensor_with_bs(x, name, bs):
# this assumes dim0 to be bs and only overrides dim0 with given bs
shape = list(x.shape)
shape[0] = bs
return tensors.update(
{name: RuntimeTensor.from_torch(name, x, override_shape=shape)})
if self.has_attn_layers:
if self.use_gpt_attention_plugin:
add_tensor(context_lengths, 'context_lengths')
assert host_runtime_perf_knobs != None, "gpt_attention_plugin needs to set host_runtime_perf_knobs"
add_tensor(host_runtime_perf_knobs, 'host_runtime_perf_knobs')
add_tensor(cache_indirection, 'cache_indirection')
if self.has_position_embedding:
add_tensor(position_ids, 'position_ids')
if self.cross_attention:
# in context phase, need to generate cross kv cache, set to True
add_tensor(torch.ones(1, dtype=torch.bool, device=self.device),
'cross_kv_cache_gen')
if self.skip_cross_qkv:
if self.cross_qkv_reuse is None:
# see Attention's self.qkv output dim
cross_qkv_out_dim = self.num_heads * self.head_size + (
2 * self.num_heads_kv * self.head_size)
cross_qkv_shape = encoder_output.shape[:-1] + (
cross_qkv_out_dim, )
cross_qkv_reuse = torch.empty(cross_qkv_shape,
dtype=encoder_output.dtype,
device=encoder_output.device)
self.cross_qkv_reuse = cross_qkv_reuse
add_tensor(self.cross_qkv_reuse, 'cross_qkv_reuse')
add_tensor(encoder_output, 'encoder_output')
add_tensor(encoder_input_lengths, 'encoder_input_lengths')
add_tensor(self.buffer['encoder_max_input_length'],
'encoder_max_input_length')
if not self.use_gpt_attention_plugin:
add_tensor(cross_attention_mask, 'cross_attention_mask')
if self.mapping.has_pp():
hidden_size = self.hidden_size * self.mapping.tp_size
if input_ids.dim() == 2:
hidden_states_input = hidden_states_input.resize_(
input_ids.shape[0], input_ids.shape[1], hidden_size)
else:
hidden_states_input = hidden_states_input.resize_(
input_ids.shape[0], hidden_size)
if self.mapping.is_last_pp_rank():
if self.is_redrafter_mode:
set_redrafter_ctx_tensors(self, add_tensor, add_tensor_with_bs)
add_tensor(self.buffer['logits'], 'logits')
if self.is_medusa_mode:
add_tensor(self.buffer['medusa_logits'], 'medusa_logits')
if not self.gather_context_logits or self.has_rnn_layers:
add_tensor(last_token_ids, 'last_token_ids')
else:
add_tensor(hidden_states_input, 'hidden_states_output')
if self.mapping.is_first_pp_rank():
add_tensor(input_ids, 'input_ids')
else:
add_tensor(hidden_states_input, 'hidden_states_input')
if prompt_embedding_table is not None:
add_tensor(prompt_embedding_table, 'prompt_embedding_table')
if self.remove_input_padding:
tasks_generation = torch.concat([
torch.full([context_lengths[b].item()],
tasks[b].item(),
dtype=torch.int32)
for b in range(context_lengths.size(0))
]).cuda()
else:
tasks_generation = tasks.unsqueeze(-1)
add_tensor(tasks_generation, 'tasks')
add_tensor(prompt_vocab_size, 'prompt_vocab_size')
if self.paged_kv_cache and self.has_attn_layers:
buffer = kv_cache_block_offsets.contiguous()
shape = kv_cache_block_offsets.shape
shape = [shape[0] * shape[1], *shape[2:]]
add_tensor_with_shape(buffer, f'kv_cache_block_offsets', shape)
add_tensor_with_shape(host_kv_cache_block_offsets,
f'host_kv_cache_block_offsets', shape)
pool_pointers = f'host_kv_cache_pool_pointers'
add_tensor(self.buffer[pool_pointers], pool_pointers)
if self.cross_attention:
cross_buffer = cross_kv_cache_block_offsets.contiguous()
cross_shape = cross_kv_cache_block_offsets.shape
cross_shape = [
cross_shape[0] * cross_shape[1], *cross_shape[2:]
]
add_tensor_with_shape(cross_buffer,
f'cross_kv_cache_block_offsets',
cross_shape)
add_tensor_with_shape(host_cross_kv_cache_block_offsets,
f'host_cross_kv_cache_block_offsets',
cross_shape)
cross_pool_pointers = f'host_cross_kv_cache_pool_pointers'
add_tensor(self.buffer[cross_pool_pointers],
cross_pool_pointers)
batch_size = context_lengths.shape[0]
if not self.paged_kv_cache:
for idx in range(self.first_layer, self.last_layer):
if not self.use_gpt_attention_plugin and self.layer_types[
idx] == 'attention':
kv_cache_shape = (batch_size, 2, self.num_heads_kv, 0,
self.head_size)
# for empty tensor, TRT does not really use the tensor data, so any dtype is fine
kv_cache_buffer = torch.zeros((1, ),
dtype=torch.float32,
device=self.device)
add_tensor_with_shape(kv_cache_buffer,
f'past_key_value_{idx}',
kv_cache_shape)
present = f'present_key_value_{idx}'
add_tensor(self.buffer[present], present)
if self.cross_attention:
cross_kv_cache_shape = (batch_size, 2,
self.num_heads_kv, 0,
self.head_size)
# for empty tensor, TRT does not really use the tensor data, so any dtype is fine
cross_kv_cache_buffer = torch.zeros((1, ),
dtype=torch.float32,
device=self.device)
add_tensor_with_shape(cross_kv_cache_buffer,
f'cross_past_key_value_{idx}',
cross_kv_cache_shape)
cross_present = f'cross_present_key_value_{idx}'
add_tensor(self.buffer[cross_present], cross_present)
elif self.layer_types[idx] == 'attention':
key_value_cache = self.buffer[f'present_key_value_{idx}']
# when plugin is used, past_ket_value tensor does not need to be empty tensor
# because plugin does not care, and does not use this shape.
add_tensor(key_value_cache, f'past_key_value_{idx}')
add_tensor(key_value_cache, f'present_key_value_{idx}')
if self.cross_attention:
cross_cache_buffer = self.buffer[
f'cross_present_key_value_{idx}']
add_tensor(cross_cache_buffer,
f'cross_past_key_value_{idx}')
add_tensor(cross_cache_buffer,
f'cross_present_key_value_{idx}')
for idx in range(self.first_layer, self.last_layer):
if self.layer_types[idx] != 'recurrent':
continue
if self.paged_state:
add_tensor(self.buffer[f'conv_state_ptr_{idx}'],
f'conv_state_ptr_{idx}')
add_tensor(self.buffer[f'rnn_state_ptr_{idx}'],
f'rnn_state_ptr_{idx}')
else:
# conv state
dtype = self._tensor_dtype(f'present_conv_state_{idx}')
if self.use_mamba_conv1d_plugin:
conv_state_shape = (batch_size, self.conv_kernel - 1,
self.rnn_conv_dim_size)
else:
conv_state_shape = (batch_size, self.rnn_conv_dim_size,
self.conv_kernel - 1)
conv_state = torch.zeros(conv_state_shape,
dtype=dtype,
device=self.device)
add_tensor(conv_state, f'past_conv_state_{idx}')
present = f'present_conv_state_{idx}'
add_tensor(self.buffer[present], present)
# rnn state
rnn_state = self.buffer[f'present_rnn_state_{idx}']
add_tensor(rnn_state, f'past_rnn_state_{idx}')
add_tensor(rnn_state, f'present_rnn_state_{idx}')
if self.paged_state and self.has_rnn_layers:
slot_mapping = torch.arange(0,
batch_size,
device='cuda',
dtype=torch.int32)
add_tensor(slot_mapping, 'slot_mapping')
if self.use_gpt_attention_plugin and self.has_attn_layers:
# context request
host_request_types = torch.zeros_like(context_lengths,
device='cpu').int()
self.sequence_length_buffer = context_lengths.detach().clone()
if self.is_redrafter_mode:
device_request_types = torch.zeros_like(
context_lengths, device=self.device).int()
add_tensor(device_request_types, 'device_request_types')
add_tensor_with_shape(self.sequence_length_buffer,
'sequence_length', (batch_size, ))
# field 0: past_key_value_length, field 1: is_context (deprecated). changed to [0], otherwise affects batch padded input mode
add_tensor_with_shape(host_context_lengths.clone(),
'host_past_key_value_lengths', (batch_size, ))
add_tensor_with_shape(self.host_sink_token_length,
'host_sink_token_length', (1, ))
add_tensor(host_request_types, 'host_request_types')
add_tensor_with_shape(self.host_max_attention_window_sizes,
f'host_max_attention_window_sizes',
(self.num_attn_layers, ))
if self.remove_input_padding:
add_tensor(host_context_lengths, 'host_context_lengths')
else:
if self.has_rnn_layers:
host_request_types = torch.zeros_like(context_lengths,
device='cpu').int()
add_tensor(host_request_types, 'host_request_types')
if self.remove_input_padding:
add_tensor(host_context_lengths, 'host_context_lengths')
if self.has_attn_layers:
add_tensor(attention_mask, 'attention_mask')
if self.mapping.tp_size > 1:
add_tensor(self.all_reduce_workspace, 'all_reduce_workspace')
if self.use_lora_plugin:
for idx in range(self.num_layers):
for lora_module in (self.lora_target_modules +
self.missing_qkv_modules):
layer_idx = idx + self.first_layer
lora_ranks = f'{lora_module}_lora_ranks_{layer_idx}'
add_tensor(self.buffer[lora_ranks], lora_ranks)
lora_weights = f'{lora_module}_lora_weights_pointers_{layer_idx}'
add_tensor(self.buffer[lora_weights], lora_weights)
if self.cross_attention and self.remove_input_padding:
add_tensor(encoder_input_lengths.to('cpu'),
'host_encoder_input_lengths')
if self.is_medusa_mode:
# Medusa mask and position offsets are fixed for the whole session.
add_tensor(self.buffer['spec_decoding_packed_mask'],
'spec_decoding_packed_mask')
add_tensor(self.buffer['spec_decoding_position_offsets'],
'spec_decoding_position_offsets')
add_tensor(self.buffer['spec_decoding_generation_lengths'],
'spec_decoding_generation_lengths')
return tensors
def _get_next_step_shape_buffer(
self,
batch_size: int,
beam_width: int,
max_context_length: int,
step: int,
context_lengths: torch.Tensor,
host_context_lengths: torch.Tensor,
position_ids: torch.Tensor,
last_token_ids: torch.Tensor,
attention_mask: torch.Tensor,
cross_attention_mask: torch.Tensor,
cache_indirection: torch.Tensor,
kv_cache_block_offsets: torch.Tensor,
host_kv_cache_block_offsets: torch.Tensor,
cross_kv_cache_block_offsets: torch.Tensor = None,
host_cross_kv_cache_block_offsets: torch.Tensor = None,
hidden_states_input: torch.Tensor = None,
prompt_embedding_table: torch.Tensor = None,
tasks: torch.Tensor = None,
prompt_vocab_size: torch.Tensor = None,
encoder_output: torch.Tensor = None,
encoder_input_lengths: torch.Tensor = None,
host_runtime_perf_knobs: torch.Tensor = None):
torch.cuda.nvtx.range_push("_get_next_step_shape_buffer")
tensors = {} # Dict[str, RuntimeTensor]
def sym(x, name):
return RuntimeTensor.from_torch(name, x)
def add_tensor(x, name):
return tensors.update({name: sym(x, name)})
def add_tensor_with_shape(x, name, shape):
return tensors.update(
{name: RuntimeTensor.from_torch(name, x, override_shape=shape)})
context_lengths_local = context_lengths.clone()
host_context_lengths_local = host_context_lengths.clone()
if self.has_attn_layers:
if self.use_gpt_attention_plugin:
add_tensor(context_lengths_local, 'context_lengths')
assert host_runtime_perf_knobs != None, "gpt_attention_plugin needs to set host_runtime_perf_knobs"
add_tensor(host_runtime_perf_knobs, 'host_runtime_perf_knobs')
add_tensor(cache_indirection, 'cache_indirection')
if self.has_position_embedding:
add_tensor(position_ids, 'position_ids')
if self.mapping.has_pp():
hidden_size = self.hidden_size * self.mapping.tp_size
shape = (batch_size * beam_width,
hidden_size) if self.remove_input_padding else (
batch_size * beam_width, 1, hidden_size)
hidden_states_input = hidden_states_input.resize_(*shape)
if self.mapping.is_last_pp_rank():
add_tensor(self.buffer['logits'], 'logits')
if self.is_medusa_mode:
add_tensor(self.buffer['medusa_logits'], 'medusa_logits')
if not self.gather_context_logits or self.has_rnn_layers:
add_tensor(last_token_ids, 'last_token_ids')
else:
add_tensor(hidden_states_input, 'hidden_states_output')
if self.mapping.is_first_pp_rank():
if self.is_redrafter_mode:
input_ids_shape = (self.host_total_gen_token, )
else:
input_ids_shape = (
batch_size * beam_width * (self.num_draft_tokens + 1),
) if self.remove_input_padding else (batch_size * beam_width,
self.num_draft_tokens + 1)
if self.is_redrafter_mode:
add_tensor_with_shape(self.buffer['flat_tokens'], 'input_ids',
input_ids_shape)
elif self.is_medusa_mode:
add_tensor_with_shape(self.generation_input_ids, 'input_ids',
input_ids_shape)
else:
add_tensor_with_shape(self.new_tokens, 'input_ids',
input_ids_shape)
else:
add_tensor(hidden_states_input, 'hidden_states_input')
if self.cross_attention:
if self.use_gpt_attention_plugin:
# disable (or minimize) cross qkv computation at generation phase
if self.skip_cross_qkv:
# disable
encoder_output_shape = encoder_output.shape
add_tensor(self.cross_qkv_reuse, 'cross_qkv_reuse')
else:
# minimize
# use TensorRT Empty Tensor to skip redundant computation
# 0 for generation phase, >0 for context phase
encoder_output_shape = [
0, encoder_output.shape[-1]
] if self.remove_input_padding else [
1, 0, encoder_output.shape[-1]
]
else:
# OOTB path doesn't have kv cache for now, so this encoder_output is
# a must-have input. We just use the encoder_output
encoder_output_shape = encoder_output.shape
# in generation phase, cross kv cache is already filled during context phase, set to False
add_tensor(torch.zeros(1, dtype=torch.bool, device=self.device),
'cross_kv_cache_gen')
add_tensor_with_shape(encoder_output, 'encoder_output',
encoder_output_shape)
add_tensor(encoder_input_lengths, 'encoder_input_lengths')
add_tensor(self.buffer['encoder_max_input_length'],
'encoder_max_input_length')
if not self.use_gpt_attention_plugin:
add_tensor(cross_attention_mask, 'cross_attention_mask')
if self.paged_kv_cache and self.has_attn_layers:
shape = kv_cache_block_offsets.shape
shape = [shape[0] * shape[1], *shape[2:]]
add_tensor_with_shape(kv_cache_block_offsets,
f'kv_cache_block_offsets', shape)
add_tensor_with_shape(host_kv_cache_block_offsets,
f'host_kv_cache_block_offsets', shape)
pool_pointers = f'host_kv_cache_pool_pointers'
add_tensor(self.buffer[pool_pointers], pool_pointers)
if self.cross_attention:
cross_shape = cross_kv_cache_block_offsets.shape
cross_shape = [
cross_shape[0] * cross_shape[1], *cross_shape[2:]
]
add_tensor_with_shape(cross_kv_cache_block_offsets,
f'cross_kv_cache_block_offsets',
cross_shape)
add_tensor_with_shape(host_cross_kv_cache_block_offsets,
f'host_cross_kv_cache_block_offsets',
cross_shape)
cross_pool_pointers = f'host_cross_kv_cache_pool_pointers'
add_tensor(self.buffer[cross_pool_pointers],
cross_pool_pointers)
if prompt_embedding_table is not None:
add_tensor(prompt_embedding_table, 'prompt_embedding_table')
if self.remove_input_padding:
gen_tasks = tasks
else:
gen_tasks = tasks.unsqueeze(-1)
add_tensor(gen_tasks, 'tasks')
add_tensor(prompt_vocab_size, 'prompt_vocab_size')
if not self.paged_kv_cache:
attn_layer_idx = 0
for idx in range(self.first_layer, self.last_layer):
if not self.use_gpt_attention_plugin and self.layer_types[
idx] == 'attention':
next_shape = (batch_size * beam_width, 2, self.num_heads_kv,
max_context_length + step, self.head_size)
# We will make current layer's output KV-cache overwrite previous layers input KV-cache
# buffer id: ... 5, 6, 7, 8, 9, ...
# layer n: out in
# layer n+1: out in
# layer n+2 out in
# And when finish a step, we will make every layer's in/out buffer index subtract 1 in
# a circular buffer way to make sure current outputs become next step's inputs.
buffer_num = self.num_attn_layers + 1 # attention layer num + 1 extra buffer.
# Subtract 1 for every step.
input_ind = attn_layer_idx - (step % buffer_num)
# When underflow, go to the back to achieve a circular buffers.
if input_ind < 0:
input_ind = self.num_attn_layers + 1 + input_ind
# Output buffer is just before input buffer. When input is buffer 0, output should use the back buffer to achieve circular buffers.
output_ind = input_ind - 1 if input_ind > 0 else self.num_attn_layers
# We only allocate layer num of normal buffers. If index is overflow, use the extra buffer.
input_name = f'present_key_value_{self.attn_to_general_idx[input_ind]}' if input_ind != self.num_attn_layers \
else f'1_present_key_value_{self.attn_to_general_idx[0]}'
output_name = f'present_key_value_{self.attn_to_general_idx[output_ind]}' if output_ind != self.num_attn_layers \
else f'1_present_key_value_{self.attn_to_general_idx[0]}'
attn_layer_idx += 1
add_tensor_with_shape(self.buffer[input_name],
f'past_key_value_{idx}', next_shape)
add_tensor(self.buffer[output_name],
f'present_key_value_{idx}')
elif self.layer_types[idx] == 'attention':
key_value_cache = self.buffer[f'present_key_value_{idx}']
add_tensor(key_value_cache, f'past_key_value_{idx}')
add_tensor(key_value_cache, f'present_key_value_{idx}')
if self.cross_attention:
cross_cache_buffer = self.buffer[
f'cross_present_key_value_{idx}']
add_tensor(cross_cache_buffer,
f'cross_past_key_value_{idx}')
add_tensor(cross_cache_buffer,
f'cross_present_key_value_{idx}')
for idx in range(self.first_layer, self.last_layer):
if self.layer_types[idx] != 'recurrent':
continue
if self.paged_state:
add_tensor(self.buffer[f'conv_state_ptr_{idx}'],
f'conv_state_ptr_{idx}')
add_tensor(self.buffer[f'rnn_state_ptr_{idx}'],
f'rnn_state_ptr_{idx}')
else:
# conv state
if self.use_mamba_conv1d_plugin:
conv_state_shape = (batch_size, self.conv_kernel - 1,
self.rnn_conv_dim_size)
else:
conv_state_shape = (batch_size, self.rnn_conv_dim_size,
self.conv_kernel - 1)
if step % 2:
add_tensor_with_shape(
self.buffer[f'1_present_conv_state_{idx}'],
f'past_conv_state_{idx}', conv_state_shape)
add_tensor(self.buffer[f'present_conv_state_{idx}'],
f'present_conv_state_{idx}')
else:
add_tensor_with_shape(
self.buffer[f'present_conv_state_{idx}'],
f'past_conv_state_{idx}', conv_state_shape)
add_tensor(self.buffer[f'1_present_conv_state_{idx}'],
f'present_conv_state_{idx}')
# rnn state
rnn_state = self.buffer[f'present_rnn_state_{idx}']
add_tensor(rnn_state, f'past_rnn_state_{idx}')
add_tensor(rnn_state, f'present_rnn_state_{idx}')
if self.paged_state and self.has_rnn_layers:
slot_mapping = torch.arange(0,
batch_size,
device='cuda',
dtype=torch.int32)
add_tensor(slot_mapping, 'slot_mapping')
if self.use_gpt_attention_plugin and self.has_attn_layers:
# generation requests
host_request_types = torch.ones_like(context_lengths,
device='cpu').int()
if self.is_redrafter_mode:
torch.cuda.nvtx.range_push("device_request_types")
device_request_types = torch.ones_like(
context_lengths, device=self.device).int()
add_tensor(device_request_types, 'device_request_types')
torch.cuda.nvtx.range_pop()
if self.is_medusa_mode or self.is_redrafter_mode:
host_past_key_value_lengths = self.sequence_length_buffer.cpu()
else:
# previous [past_kv_length, is_context] has been deprecated. only past_kv_length should be given here
# Note we should use max_context_length here to align to max -- but isn't this done in attn plugin's max_element() already?
host_past_key_value_lengths = torch.tensor(
[max_context_length + step] * (batch_size * beam_width),
dtype=torch.int32,
device='cpu')
add_tensor(host_past_key_value_lengths,
'host_past_key_value_lengths')
add_tensor(host_request_types, 'host_request_types')
# Sequence lengths are not used in the context phase actually.
sequence_length = self.sequence_length_buffer
add_tensor_with_shape(sequence_length, 'sequence_length',
(batch_size * beam_width, ))
add_tensor_with_shape(self.host_sink_token_length,
'host_sink_token_length', (1, ))
add_tensor_with_shape(self.host_max_attention_window_sizes,
f'host_max_attention_window_sizes',
(self.num_attn_layers, ))
if self.remove_input_padding:
add_tensor(host_context_lengths_local, 'host_context_lengths')
else:
if self.has_rnn_layers:
host_request_types = torch.ones_like(context_lengths,
device='cpu').int()
add_tensor(host_request_types, 'host_request_types')
if self.remove_input_padding:
add_tensor(host_context_lengths_local,
'host_context_lengths')
if self.has_attn_layers:
add_tensor(attention_mask, 'attention_mask')
if self.mapping.tp_size > 1:
add_tensor(self.all_reduce_workspace, 'all_reduce_workspace')
# Since we are using a ping-pong context design and the lora weight remains constant within the same request,
# it is only necessary to set the lora weight for the first two steps.
if self.use_lora_plugin and step < 2:
for idx in range(self.num_layers):
layer_idx = idx + self.first_layer
for lora_module in (self.lora_target_modules +
self.missing_qkv_modules):
lora_ranks = f'{lora_module}_lora_ranks_{layer_idx}'
add_tensor(self.buffer[lora_ranks], lora_ranks)
lora_module = f'{lora_module}_lora_weights_pointers_{layer_idx}'
add_tensor(self.buffer[lora_module], lora_module)
if self.cross_attention and self.remove_input_padding:
add_tensor(encoder_input_lengths.to('cpu'),
'host_encoder_input_lengths')
if self.is_medusa_mode:
# Spec Decoding mask and position offsets are fixed for the whole session for Medusa.
add_tensor(self.buffer['spec_decoding_packed_mask'],
'spec_decoding_packed_mask')
add_tensor(self.buffer['spec_decoding_position_offsets'],
'spec_decoding_position_offsets')
add_tensor(self.buffer['spec_decoding_generation_lengths'],
'spec_decoding_generation_lengths')
if self.is_redrafter_mode:
set_redrafter_gen_tensors(self, batch_size, add_tensor,
add_tensor_with_shape)
torch.cuda.nvtx.range_pop()
return tensors
def _prepare_context_inputs(self, batch_size, context_lengths,
host_context_lengths, use_gpt_attention_plugin,
remove_input_padding, **kwargs):
last_token_ids = context_lengths.detach().clone()
if (self.is_medusa_mode
or self.is_redrafter_mode) and not remove_input_padding:
# For Medusa, last_token_ids should contain the actual indices
last_token_ids = last_token_ids - 1 # sub 1 from context_lengths for indices
last_token_ids = last_token_ids.reshape([batch_size, -1])
if (use_gpt_attention_plugin
or self.has_rnn_layers) and remove_input_padding:
last_token_ids = torch.cumsum(last_token_ids, dim=0).int()
ret = {'last_token_ids': last_token_ids}
if use_gpt_attention_plugin:
max_context_length = kwargs.pop('max_context_length')
if remove_input_padding:
position_ids = torch.concat([
torch.arange(0,
host_context_lengths[i],
dtype=torch.int32,
device='cuda') for i in range(batch_size)
])
else:
position_ids = torch.tensor(range(max_context_length),
dtype=torch.int32,
device='cuda').reshape(
[1,
-1]).expand([batch_size, -1])
perf_knob_tensor_size = 16
context_runtime_perf_knobs = torch.tensor([-1] *
perf_knob_tensor_size,
dtype=torch.int64)
if self.multi_block_mode:
context_runtime_perf_knobs[0] = 1
ret['host_runtime_perf_knobs'] = context_runtime_perf_knobs
else:
if self.has_attn_layers:
input_ids = kwargs.pop('input_ids')
pad_id = kwargs.pop('pad_id', None)
attention_mask = _prepare_attention_mask(input_ids, pad_id)
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids.int()
ret['attention_mask'] = attention_mask
if self.has_position_embedding and self.has_attn_layers:
ret['position_ids'] = position_ids
if self.is_redrafter_mode:
self.buffer['position_ids_base'] = context_lengths.clone()
return ret
def _prepare_generation_inputs(self, batch_size, context_lengths,
use_gpt_attention_plugin,
remove_input_padding, **kwargs):
torch.cuda.nvtx.range_push("_prepare_generation_inputs")
step = kwargs.pop('step')
last_token_ids = torch.ones_like(context_lengths)
if use_gpt_attention_plugin and (self.is_medusa_mode
or self.is_redrafter_mode):
if remove_input_padding:
if self.is_medusa_mode:
# For Medusa, last_token_ids should be [bs * seq] and should contain the actual indices (starts from 1)
last_token_ids = torch.ones(batch_size *
(self.num_draft_tokens + 1),
dtype=torch.int32,
device=context_lengths.device)
elif self.is_redrafter_mode:
torch.cuda.nvtx.range_push("last_token_ids_1s")
# update last_token_ids here (buffers already swapped)
last_token_ids = torch.ones(self.host_total_gen_token,
dtype=torch.int32,
device=context_lengths.device)
torch.cuda.nvtx.range_pop()
else:
# For Medusa, last_token_ids should be [bs, seq] and should contain the actual indices (starts from 0)
last_token_ids = torch.arange(self.num_draft_tokens + 1,
dtype=torch.int32,
device=context_lengths.device)
last_token_ids = last_token_ids.expand([batch_size, -1])
if (use_gpt_attention_plugin
or self.has_rnn_layers) and remove_input_padding:
torch.cuda.nvtx.range_push("last_token_ids_cumsum")
last_token_ids = torch.cumsum(last_token_ids, dim=0).int()
torch.cuda.nvtx.range_pop()
ret = {'last_token_ids': last_token_ids}
if self.is_redrafter_mode:
torch.cuda.nvtx.range_push("position_ids_update")
# set position_ids
# buffers are swapped but sequence_length is not updated at this point
if step != 0:
self.buffer['position_ids_base'] += self.buffer[
'num_accepted_tokens']
position_ids = self.buffer['packed_position_ids'].view(
-1)[:self.host_total_gen_token]
if step == 0:
position_ids -= 1
torch.cuda.nvtx.range_pop()
elif use_gpt_attention_plugin:
position_ids = context_lengths + step
if not remove_input_padding:
position_ids = torch.unsqueeze(position_ids, 1)
perf_knob_tensor_size = 16
gen_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
dtype=torch.int64)
if self.multi_block_mode:
gen_runtime_perf_knobs[0] = 1
ret['host_runtime_perf_knobs'] = gen_runtime_perf_knobs
elif self.has_attn_layers:
attention_mask = kwargs.pop('attention_mask')
num_beams = kwargs.pop('num_beams')
attention_mask = torch.cat((attention_mask,
attention_mask.new_ones(
(batch_size * num_beams, 1))),
dim=-1).contiguous()
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids[:, -1].unsqueeze(-1)
position_ids = position_ids.int()
ret['attention_mask'] = attention_mask
if self.has_position_embedding and self.has_attn_layers:
ret['position_ids'] = position_ids
if self.is_redrafter_mode:
# buffers are already swapped
# convert spec_decoding_mask to spec_decoding_packed_mask
redrafter_convert_spec_decoding_mask_to_packed_mask(
self, self.buffer['spec_decoding_generation_lengths'])
# NOTE: Generate random tensors using torch
torch.cuda.nvtx.range_push("torch_rand")
# NOTE: Tried a single rand() instead of 2, no change in perf
torch.manual_seed(self.sequence_length_buffer.max())
self.buffer['rand_data_sample'] = torch.rand([batch_size],
dtype=self.dtype,
device=self.device)
self.buffer['rand_data_validation'] = torch.rand([
batch_size, self._model_config.redrafter_num_beams,
self._model_config.redrafter_draft_len_per_beam
],
dtype=self.dtype,
device=self.device)
torch.cuda.nvtx.range_pop()
torch.cuda.nvtx.range_pop()
return ret
def pp_communicate_new_tokens(self, should_stop, cache_indir,
sequence_length):
if self.mapping.is_last_pp_rank():
for pg in self.mapping.pp_group:
if pg == self.mapping.rank:
continue
should_stop = should_stop.to(self.device)
self.nccl_comm.send(should_stop, pg)
self.nccl_comm.send(cache_indir, pg)
self.nccl_comm.send(sequence_length, pg)
self.nccl_comm.send(self.new_tokens, self.mapping.pp_group[0])
else:
should_stop = torch.zeros(1, dtype=torch.bool, device=self.device)
self.nccl_comm.recv(should_stop, self.mapping.pp_group[-1])
self.nccl_comm.recv(cache_indir, self.mapping.pp_group[-1])
self.nccl_comm.recv(sequence_length, self.mapping.pp_group[-1])
if self.mapping.is_first_pp_rank():
self.nccl_comm.recv(self.new_tokens, self.mapping.pp_group[-1])
return should_stop
def pp_communicate_final_output_ids(self, final_output_ids, batch_size,
beam_width):
if self.mapping.is_last_pp_rank():
self.nccl_comm.send(final_output_ids, self.mapping.pp_group[0])
elif self.mapping.is_first_pp_rank():
final_output_ids = torch.zeros(
(batch_size, beam_width, self.max_seq_length),
dtype=torch.int32,
device=self.device)
self.nccl_comm.recv(final_output_ids, self.mapping.pp_group[-1])
return final_output_ids
def finalize_decoder(self,
context_lengths,
batch_size,
beam_width,
scfg,
in_progress=False):
final_output_ids = None
if self.mapping.is_last_pp_rank():
# output shape of self.gather_tree: [batch_size, beam_width, output_len]
beam_hyps_args = [
self.beam_hyps_output_ids_cba, self.beam_hyps_seq_len_cba,
self.beam_hyps_cum_log_probs_cba,
self.beam_hyps_normed_scores_cba, self.beam_hyps_log_probs_cba,
self.beam_hyps_min_normed_scores, self.beam_hyps_num_beams,
self.beam_hyps_is_done
]
if scfg.use_beam_hyps and in_progress:
# self.gather_tree modifies these args.
# In streaming mode, this results in incorrect decoding in the following steps.
beam_hyps_args = copy.deepcopy(beam_hyps_args)
final_output_ids = self.gather_tree(
self.sequence_length_buffer, self.output_ids, self.parent_ids,
self.end_ids, context_lengths, self.cum_log_probs,
self.log_probs, self.log_probs_tiled, *beam_hyps_args,
self.finished, self.length_penalty, batch_size, beam_width,
self.max_seq_length, scfg.use_beam_hyps)
# Communicate ranks in Pipeline Parallelism
if self.mapping.has_pp():
final_output_ids = self.pp_communicate_final_output_ids(
final_output_ids, batch_size, beam_width)
return final_output_ids
def find_best_medusa_path(self,
batch_size,
input_ids: torch.Tensor,
next_logits,
temp=0):
assert input_ids.shape[-1] == self.num_draft_tokens + 1
best_path = [0] * batch_size
best_path_len = [1] * batch_size
next_tokens = [None] * batch_size
zero_pad = torch.zeros((batch_size, 1),
dtype=input_ids.dtype,
device=input_ids.device)
input_ids = torch.cat((input_ids, zero_pad), dim=-1)
if temp == 0:
new_tokens_raw = torch.argmax(
next_logits, dim=-1
) # TODO: can be done by treating [bs, nT, vocab] as [bs*nT, vocab] and using decoderOp?
new_tokens = torch.cat((new_tokens_raw, zero_pad), dim=-1)
input_paths = [
input_ids[b, self.medusa_paths] for b in range(batch_size)
]
new_paths = [
new_tokens[b, self.medusa_paths] for b in range(batch_size)
]
for b in range(batch_size):
equality = input_paths[b][:, 1:] == new_paths[b][:, :-1]
paths_correct_len = torch.cumprod(equality.int(),
dim=1).sum(dim=1)
best_path_len[b] = paths_correct_len.max().item() + 1
if best_path_len[b] > 1:
best_path[b] = torch.argmax(paths_correct_len)
next_tokens[b] = new_paths[b][
best_path[b]][:best_path_len[b]].clone()
return best_path, best_path_len, next_tokens
def filter_medusa_logits(self, batch_size, best_path, best_path_lengths,
medusa_logits):
"""
medusa_logits is of shape [nMH, bs, nMT+1, vocab]
Returns [nMH, bs, vocab]
"""
filtered_logits = torch.empty(
(self.num_medusa_heads, batch_size, self.vocab_size_padded),
dtype=medusa_logits.dtype,
device=medusa_logits.device)
medusa_logits = medusa_logits.view(self.num_medusa_heads, batch_size,
self.num_draft_tokens + 1, -1)
for b in range(batch_size):
idx = self.medusa_paths[best_path[b], best_path_lengths[b] - 1]
filtered_logits[:, b, ...] = medusa_logits[:, b, idx, ...]
return filtered_logits
def get_next_medusa_tokens(self, batch_size, next_medusa_logits):
next_medusa_tokens = [
torch.zeros((batch_size, 1),
dtype=torch.int32,
device=next_medusa_logits.device)
] # dummy token for now, TODO: update tree_ids and remove this
for i in range(self.num_medusa_heads):
medusa_token = torch.topk(next_medusa_logits[i, :, :],
self.medusa_topks[i],
dim=-1).indices
next_medusa_tokens.append(medusa_token)
next_medusa_tokens = torch.cat(next_medusa_tokens, dim=-1)
return next_medusa_tokens
def locate_accepted_draft_tokens(self, batch_size, best_path, best_path_len,
draft_paths):
torch.cuda.nvtx.range_push("locate_accepted_draft_tokens")
best_path_len_tensor = best_path_len if isinstance(
best_path_len, torch.Tensor) else torch.tensor(
best_path_len, dtype=torch.int, device='cuda')
accepted_draft_token_counts = torch.maximum(
best_path_len_tensor - 1,
torch.tensor([0], device=best_path_len_tensor.device))
accepted_draft_token_offsets = torch.zeros(batch_size + 1,
dtype=torch.int32,
device='cuda')
accepted_draft_token_offsets[1:] = torch.cumsum(
accepted_draft_token_counts, dim=0)
accepted_draft_token_offsets_cpu = accepted_draft_token_offsets.to(
'cpu')
packed_accepted_draft_tokens_indices = torch.empty(
accepted_draft_token_offsets_cpu[batch_size],
dtype=torch.int32,
device='cuda')
for seq_idx in range(batch_size):
cur_draft_paths = draft_paths if self.is_medusa_mode else draft_paths[
seq_idx]
seq_start = accepted_draft_token_offsets_cpu[seq_idx]
seq_end = accepted_draft_token_offsets_cpu[seq_idx + 1]
seq_accepted_draft_count = seq_end - seq_start
best_path_idx = best_path[seq_idx].cpu() if isinstance(
best_path[seq_idx], torch.Tensor) else best_path[seq_idx]
seq_accepted_token_indices = cur_draft_paths[
best_path_idx, 1:1 + seq_accepted_draft_count]
packed_accepted_draft_tokens_indices[
seq_start:seq_end] = seq_accepted_token_indices - 1
# print("KV offsets & indices", accepted_draft_token_offsets,
# packed_accepted_draft_tokens_indices,)
torch.cuda.nvtx.range_pop()
return accepted_draft_token_offsets, packed_accepted_draft_tokens_indices
def update_output_ids_by_offset(self, new_generated_ids, offsets):
# output_ids [batch_size, padded_input_length]
# new_generated_ids [batch_size, padded_accepted_length]
# offsets [batch_size]
# FIXME: using fused kernel to update the padded output ids.
batch_size = self.output_ids.shape[0]
for b in range(batch_size):
self.output_ids[b, offsets[b]:(
offsets[b] + self.accept_lengths[b]
)] = new_generated_ids[b][:self.accept_lengths[b]]
return
def next_medusa_input_ids(self):
# self.new_tokens [batch_size, padded_accepted_length]
# self.accept_lengths [batch_size]
# self.medusa_new_tokens [batch_size, num_draft_tokens]
# FIXME: using fused kernel to generate the new medusa input ids.
batch_size = self.new_tokens.shape[0]
for b in range(batch_size):
self.generation_input_ids[b, 0] = self.new_tokens[
b, self.accept_lengths[b] - 1]
self.generation_input_ids[b, 1:] = self.medusa_output_tokens[b, :]
# OPTIMIZE: need to optimize this early-stop workflow.
def early_stop_criteria(self, batch_size, step, should_stop):
for b in range(batch_size):
if self.medusa_should_stop[b]:
self.accept_lengths[b] = 0
continue
# output sequence length criteria.
prev_total_output_length = self.total_accept_lengths[b]
# end id criteria.
end_id_mask = self.new_tokens[
b, :self.accept_lengths[b]] == self.end_ids[b]
should_stop_with_end_id = torch.any(end_id_mask)
self.medusa_should_stop[b] = self.medusa_should_stop[b] or (
prev_total_output_length + self.accept_lengths[b] >=
self.max_new_tokens) or should_stop_with_end_id
# update accept lengths for the current step.
if (prev_total_output_length + self.accept_lengths[b] >=
self.max_new_tokens):
self.accept_lengths[b] = min(
self.max_new_tokens - prev_total_output_length,
self.accept_lengths[b])
if should_stop_with_end_id:
# get the position of first end_id.
end_id_pos = (end_id_mask).nonzero(as_tuple=True)[0]
self.accept_lengths[b] = min(end_id_pos[0] + 1,
self.accept_lengths[b])
self.total_accept_lengths[b] += self.accept_lengths[b]
should_stop[0] = should_stop[0] or (step == self.max_new_tokens -
1) or torch.all(
self.medusa_should_stop)
return should_stop
def medusa_decode_and_verify(self, step, batch_size, logits):
medusa_logits = self.buffer['medusa_logits']
best_path = None
best_path_lengths = None
if step == 0:
# logits buffer is of shape [bs, medusa_tokens+1, vocab]
# but during context phase, we get only [bs, 1, vocab] but contiguous
logits = logits.view(-1)[:batch_size * logits.shape[-1]].view(
batch_size, -1)
next_main_token_logits = logits.to(self.decoder_logits_dtype)
next_main_token = torch.argmax(next_main_token_logits,
dim=-1,
keepdim=True)
self.new_tokens = next_main_token
# NOTE: only one token's medusa logit will be written in.
medusa_logits = medusa_logits.view(self.num_draft_tokens + 1,
-1)[0, ...]
next_medusa_logits = medusa_logits.reshape(
self.num_medusa_heads, batch_size,
-1).to(self.decoder_logits_dtype)
next_medusa_tokens = self.get_next_medusa_tokens(
batch_size, next_medusa_logits)
self.medusa_output_tokens = next_medusa_tokens[:,
self.medusa_tree_ids[
-self.
num_draft_tokens:]]
self.accept_lengths = torch.ones([batch_size],
dtype=torch.int32,
device=self.device)
else:
next_token_logits = logits.to(self.decoder_logits_dtype)
best_path, best_path_lengths, next_main_tokens = self.find_best_medusa_path(
batch_size, self.generation_input_ids.view(batch_size, -1),
next_token_logits.view(batch_size, self.num_draft_tokens + 1,
-1))
self.accept_lengths = torch.tensor(best_path_lengths,
device=self.device)
self.new_tokens = torch.nested.to_padded_tensor(
torch.nested.nested_tensor(next_main_tokens, dtype=torch.int32),
self.end_ids[0]) #FIXME end id padding.
next_medusa_logits = self.filter_medusa_logits(
batch_size, best_path, best_path_lengths, medusa_logits)
next_medusa_tokens = self.get_next_medusa_tokens(
batch_size, next_medusa_logits)
self.medusa_output_tokens = next_medusa_tokens[:,
self.medusa_tree_ids[
-self.
num_draft_tokens:]]
return best_path, best_path_lengths
def process_logits_including_draft(self, step, batch_size, logits,
next_step_buffer):
"""
1. Process logits to tokens and validate (Medusa) or process outputs (ReDrafter)
2. Extract early stop criteria here : self.accept_length
3. Update output ids : needs self.new_tokens and past_sequence_length
4. Get next input_ids : self.[new_tokens, accept_lengths, medusa_output_tokens]
5. Update KV cache : self.[sequence_length, num_draft_tokens]
6. Update sequence_length_buffer and past_kv_length
"""
should_stop = torch.tensor([False], dtype=bool)
if self.is_medusa_mode:
# NOTE: this function call also updates self.[accept_lengths, new_tokens, medusa_output_tokens]
best_path, best_path_lengths = self.medusa_decode_and_verify(
step, batch_size, logits)
last_draft_paths = self.medusa_paths
# print(best_path, self.new_tokens, self.medusa_output_tokens)
last_draft_tokens_len = self.num_draft_tokens if step > 0 else 0
cur_draft_tokens_len = self.num_draft_tokens
elif self.is_redrafter_mode:
# buffers are swapped at this point
last_draft_tokens = self.buffer['next_draft_tokens']
new_draft_tokens = self.buffer['draft_tokens']
last_draft_paths = self.buffer["next_draft_indices"]
last_draft_tokens_len = self.buffer[
'next_spec_decoding_generation_lengths'] - 1 if step > 0 else 0
cur_draft_tokens_len = self.buffer[
'spec_decoding_generation_lengths'] - 1
best_path, best_path_lengths = process_redrafter_outputs(
self, step, batch_size, last_draft_tokens, new_draft_tokens)
# NOTE: stop criteria
torch.cuda.nvtx.range_push("early_stop_check")
if step == 0:
self.total_accept_lengths = self.accept_lengths.clone()
self.medusa_should_stop = torch.eq(self.new_tokens.reshape(-1),
self.end_ids)
should_stop[0] = torch.equal(
self.new_tokens.reshape(-1),
self.end_ids) or (step == self.max_new_tokens - 1)
else:
should_stop = self.early_stop_criteria(batch_size, step,
should_stop)
torch.cuda.nvtx.range_pop()
# NOTE: self.accept_lengths are the lengths of accepted tokens in the current step
# NOTE: self.sequence_length_buffer = num_past_kv_cache (accepted) + accept_lengths
torch.cuda.nvtx.range_push("update_output_ids")
self.update_output_ids_by_offset(
self.new_tokens,
self.sequence_length_buffer - last_draft_tokens_len)
torch.cuda.nvtx.range_pop()
if step != self.max_new_tokens - 1 and not should_stop.item():
if self.is_medusa_mode:
self.next_medusa_input_ids()
if step != 0:
assert best_path is not None and best_path_lengths is not None
accepted_draft_token_offsets, packed_accepted_draft_tokens_indices = self.locate_accepted_draft_tokens(
batch_size, best_path, best_path_lengths, last_draft_paths)
# update the KV cache
torch.cuda.nvtx.range_push("kv_update")
self.kv_cache_updater.update(
accepted_draft_token_offsets,
packed_accepted_draft_tokens_indices,
self.sequence_length_buffer, last_draft_tokens_len)
torch.cuda.nvtx.range_pop()
self.sequence_length_buffer += self.accept_lengths + cur_draft_tokens_len - last_draft_tokens_len
else:
self.sequence_length_buffer += cur_draft_tokens_len + 1
# NOTE: set the accepted tokens for the last step.
if should_stop.item():
# remove num_draft_tokens for next generation.
# Runtime: denotes kv cache length start positions.
# Output: denotes the length of sequence length (input ids + output ids)
self.sequence_length_buffer += self.accept_lengths - last_draft_tokens_len
if next_step_buffer is not None:
next_step_buffer['host_past_key_value_lengths'].to_torch().copy_(
self.sequence_length_buffer)
return should_stop
def handle_per_step(
self, cache_indirections: list, step: int, batch_size: int,
max_context_length: int, beam_width: int, input_ids: torch.Tensor,
hidden_states: torch.Tensor, scfg: SamplingConfig,
kv_cache_block_offsets: torch.Tensor,
host_kv_cache_block_offsets: torch.Tensor,
cross_kv_cache_block_offsets: torch.Tensor,
host_cross_kv_cache_block_offsets: torch.Tensor,
prompt_embedding_table: torch.Tensor, tasks: torch.Tensor,
context_lengths: torch.Tensor, host_context_lengths,
attention_mask: torch.Tensor, cross_attention_mask: torch.Tensor,
prompt_vocab_size: torch.Tensor, ite: int,
sequence_limit_lengths: torch.Tensor,
sequence_lengths: torch.Tensor,
next_step_tensors: Dict[str, RuntimeTensor], stop_words_data,
bad_words_data, encoder_output: torch.Tensor,
encoder_input_lengths: torch.Tensor,
stopping_criteria: StoppingCriteria,
logits_processor: LogitsProcessor, **kwargs):
if self.debug_mode:
print(
f"=================================== STEP {step} =================================="
)
if step % 2:
context = self.runtime.context_0
this_src_cache_indirection = cache_indirections[1]
this_tgt_cache_indirection = cache_indirections[0]
next_src_cache_indirection = cache_indirections[0]
else:
context = self.runtime.context_1
this_src_cache_indirection = cache_indirections[0]
this_tgt_cache_indirection = cache_indirections[1]
next_src_cache_indirection = cache_indirections[1]
if step == 0:
model_inputs = self._prepare_context_inputs(
batch_size=batch_size,
context_lengths=context_lengths,
host_context_lengths=host_context_lengths,
use_gpt_attention_plugin=self.use_gpt_attention_plugin,
remove_input_padding=self.remove_input_padding,
max_context_length=max_context_length,
input_ids=input_ids,
pad_id=scfg.pad_id,
eos_id=scfg.end_id)
position_ids = model_inputs.get('position_ids', None)
last_token_ids = model_inputs.get('last_token_ids')
attention_mask = model_inputs.get('attention_mask', None)
context_runtime_perf_knobs = model_inputs.get(
'host_runtime_perf_knobs', None)
if self.paged_kv_cache and self.has_attn_layers:
host_kv_cache_block_offsets = self.kv_cache_manager.get_block_offsets(
beam_width=1)
kv_cache_block_offsets = host_kv_cache_block_offsets.to('cuda')
if self.cross_attention:
host_cross_kv_cache_block_offsets = self.cross_kv_cache_manager.get_block_offsets(
beam_width=1)
cross_kv_cache_block_offsets = host_cross_kv_cache_block_offsets.to(
'cuda')
ctx_tensors = self._get_context_shape_buffer(
input_ids,
context_lengths,
host_context_lengths,
position_ids,
last_token_ids,
attention_mask,
cross_attention_mask,
this_src_cache_indirection,
kv_cache_block_offsets,
host_kv_cache_block_offsets,
cross_kv_cache_block_offsets,
host_cross_kv_cache_block_offsets,
hidden_states,
prompt_embedding_table,
tasks,
prompt_vocab_size,
encoder_output,
encoder_input_lengths,
host_runtime_perf_knobs=context_runtime_perf_knobs)
context = self.runtime.ctx_context
self.runtime._set_tensors(context, ctx_tensors)
if self.debug_mode:
self.debug_buffer = {
name: tensor.to_torch()
for name, tensor in ctx_tensors.items()
}
if self.cuda_graph_mode:
# context mode, clean cuda graph instances
self.runtime.cuda_graph_instances = [None for _ in range(2)]
if self.debug_mode and False: # TODO: after TRT bug is fixed
self.runtime._check_tensors(context)
# dynamic_decoder currently use torch's current stream, so must let TRT enqueue use same stream here
stream = torch.cuda.current_stream().cuda_stream
instance_idx = step % 2
if self.cuda_graph_mode and self.runtime.cuda_graph_instances[
instance_idx] is not None:
# launch cuda graph
CUASSERT(
cudart.cudaGraphLaunch(
self.runtime.cuda_graph_instances[instance_idx], stream))
ok = True
else:
ok = self.runtime._run(context, stream)
if not ok:
raise RuntimeError(f"Executing TRT engine failed step={step}!")
# TODO: remove this Windows WAR after https://nvbugs/4460474 is fixed.
if platform.system() == "Windows" or self.debug_mode:
torch.cuda.synchronize()
context_logits = None
if self.mapping.is_last_pp_rank():
if step == 0 and self.gather_context_logits:
assert not self.is_medusa_mode and not self.is_redrafter_mode
context_logits = self.buffer['logits'].detach().clone()
# gather last token of context
if self.remove_input_padding:
# reshape self.buffer['logits'] from [bs, max_context_length, vocab]
# to [1, bs * max_context_length, vocab]
# Note that the data are put in the buffer without padding although
# the allocated buffer has padding.
self.buffer['logits'] = self.buffer['logits'].reshape(
[1, -1, self.vocab_size_padded])
self.buffer['logits'] = torch.index_select(
self.buffer['logits'], 1,
last_token_ids - 1).view(batch_size,
self.vocab_size_padded)
else:
last_token_ids = last_token_ids.reshape(batch_size, 1, 1)
last_token_ids = last_token_ids.expand(
batch_size, 1, self.vocab_size_padded) - 1
self.buffer['logits'] = torch.gather(
self.buffer['logits'],
dim=1,
index=last_token_ids.to(dtype=torch.int64)).view(
batch_size, self.vocab_size_padded)
if step == 0 and beam_width > 1:
assert not self.is_medusa_mode and not self.is_redrafter_mode
assert not self.has_rnn_layers
# these tiled tensors are returned by handle_per_step(), so they can relay to the next generation calls
if not self.use_gpt_attention_plugin:
attention_mask = _tile_beam_width(attention_mask, beam_width)
context_lengths = _tile_beam_width(context_lengths, beam_width)
host_context_lengths = _tile_beam_width(host_context_lengths,
beam_width)
if encoder_input_lengths is not None:
encoder_input_lengths = _tile_beam_width(
encoder_input_lengths, beam_width)
if tasks is not None:
tasks = _tile_beam_width(tasks, beam_width)
# Move tiling before logit computing of context
if not self.paged_kv_cache:
for key in self.buffer:
# Note: this tiles both self attn cache and cross attn
# cache! both names contain "present_key_value"
if "present_key_value" in key:
if self.use_gpt_attention_plugin:
self.buffer[key] = _tile_beam_width(
self.buffer[key], beam_width)
else:
# In the OOTB path, KV cache should be contiguously
# tiled since TRT engine allocates past_kv cache of
# length context_length, i.e., we need a buffer of
# shape (batch * beam, 2, heads, context_length, head_size).
b, _, h, _, d = self.buffer[key].shape
numel = 2 * b * h * (max_context_length + step) * d
self.buffer[key] = _contiguous_tile_beam_width(
self.buffer[key], numel, beam_width)
if self.mapping.is_last_pp_rank():
self.buffer['logits'] = _tile_beam_width(
self.buffer['logits'], beam_width)
generation_logits = None
if self.mapping.is_last_pp_rank():
if self.gather_generation_logits:
generation_logits = self.buffer['logits'].detach().clone()
# Initialize sequence_lengths (no paddings) for the generation phase.
if step == 0 and not self.is_medusa_mode and not self.is_redrafter_mode: # Medusa/ReDrafter has its own logic
self.sequence_length_buffer = context_lengths.detach().clone()
if self.is_redrafter_mode:
# to simplify some processing logic, always swap buffers after execution
exchange_redrafter_buffers(self)
# NOTE: handle next step.
if not step == self.max_new_tokens - 1:
# Set shape and address for the next step
model_inputs = self._prepare_generation_inputs(
batch_size=batch_size,
context_lengths=context_lengths,
use_gpt_attention_plugin=self.use_gpt_attention_plugin,
remove_input_padding=self.remove_input_padding,
step=step,
num_beams=beam_width,
attention_mask=attention_mask,
)
position_ids = model_inputs.get('position_ids', None)
last_token_ids = model_inputs.get('last_token_ids')
attention_mask = model_inputs.get('attention_mask', None)
gen_runtime_perf_knobs = model_inputs.get('host_runtime_perf_knobs',
None)
# Prepare for the next step, and always allocate 1 token slot.
if self.paged_kv_cache and self.has_attn_layers:
# Iterate to the next step in KV cache manager.
# Increase number of tokens for all unfinished sequences.
# And allocate new blocks if needed.
# We set this to False for all sequences, since we use only length criterion to stop now
# OPTIMIZE: find a better of adding multiple tokens for paged kv cache.
torch.cuda.nvtx.range_push("paged_kv_alloc")
if self.is_redrafter_mode and self.max_draft_tokens > 0:
add_token_count = (self.max_draft_tokens +
1) * 2 if step == 0 else torch.max(
self.accept_lengths).item()
assert add_token_count > 0
for _ in range(add_token_count):
self.kv_cache_manager.step([False] * batch_size)
if self.is_medusa_mode and self.num_draft_tokens > 0:
# Allocate kv cache token slots for next step.
# Make sure there are always > (num_draft_tokens + 1) free token slots.
# Allocate (num_draft_tokens + 1) * 2 for safety as we don't know the current step or next step's accepted lengths.
add_token_count = (self.num_draft_tokens +
1) * 2 if step == 0 else torch.max(
self.accept_lengths).item()
assert add_token_count > 0
for _ in range(add_token_count):
self.kv_cache_manager.step([False] * batch_size)
else:
self.kv_cache_manager.step([False] * batch_size)
torch.cuda.nvtx.range_pop()
torch.cuda.nvtx.range_push("paged_kv_post_alloc")
host_kv_cache_block_offsets = self.kv_cache_manager.get_block_offsets(
beam_width)
kv_cache_block_offsets = host_kv_cache_block_offsets.to('cuda')
if self.cross_attention:
host_cross_kv_cache_block_offsets = self.cross_kv_cache_manager.get_block_offsets(
beam_width)
cross_kv_cache_block_offsets = host_cross_kv_cache_block_offsets.to(
'cuda')
torch.cuda.nvtx.range_pop()
next_context = self.runtime.context_1 if step % 2 else self.runtime.context_0
next_step_tensors = self._get_next_step_shape_buffer(
batch_size,
beam_width,
max_context_length,
step,
context_lengths,
host_context_lengths,
position_ids,
last_token_ids,
attention_mask,
cross_attention_mask,
next_src_cache_indirection,
kv_cache_block_offsets,
host_kv_cache_block_offsets,
cross_kv_cache_block_offsets,
host_cross_kv_cache_block_offsets,
hidden_states,
prompt_embedding_table,
tasks,
prompt_vocab_size,
encoder_output,
encoder_input_lengths,
host_runtime_perf_knobs=gen_runtime_perf_knobs)
# there are some tensors created inside the _get_next_step_shape_buffer, not owned by any object
# needs to pro-long the life time of the tensors inside the next_step_tensors array
# otherwise, it maybe released before the next step actually enqueued
# one way to prolong it is to return the list, and destroy it in next step by assigning new values
torch.cuda.nvtx.range_push("_set_tensors")
self.runtime._set_tensors(next_context, next_step_tensors)
torch.cuda.nvtx.range_pop()
if self.cuda_graph_mode:
self._capture_cuda_graph_and_instantiate(
next_context, stream, step)
should_stop = None
logits = None
if self.mapping.is_last_pp_rank():
logits = self.buffer['logits']
if self.is_redrafter_mode:
should_stop = self.process_logits_including_draft(
step, batch_size, logits, next_step_tensors)
elif logits is not None:
if self.is_medusa_mode:
should_stop = self.process_logits_including_draft(
step, batch_size, logits, next_step_tensors)
else:
if logits_processor is not None:
final_output_ids = self.finalize_decoder(
context_lengths,
batch_size,
beam_width,
scfg,
in_progress=True)
# keep the shape as same as huggingface stopping_criteria
final_output_ids_ = final_output_ids.reshape(
-1, final_output_ids.size(-1))
logits = logits_processor(step, final_output_ids_,
logits)
self.buffer['logits'] = logits
# [batch_size x beam_width, vocab_size_padded] -> [batch_size, beam_width, vocab_size_padded]
next_token_logits = logits.reshape(
(batch_size, beam_width,
-1)).to(self.decoder_logits_dtype)
decode_step = step + max_context_length
stop_words_list_ptrs, stop_words_lens, max_stop_words_len = stop_words_data
bad_words_list_ptrs, bad_words_lens, max_bad_words_len = bad_words_data
should_stop = self.dynamic_decoder.forward(
next_token_logits, decode_step, max_context_length,
self.max_attention_window_size, self.sink_token_length,
ite, batch_size, self.end_ids, self.embedding_bias_opt,
context_lengths, sequence_limit_lengths,
stop_words_list_ptrs, stop_words_lens,
max_stop_words_len, bad_words_list_ptrs, bad_words_lens,
max_bad_words_len, this_src_cache_indirection,
self.output_ids, self.new_tokens, self.finished,
self.finished, self.sequence_length_buffer,
self.cum_log_probs, self.log_probs,
self.log_probs_tiled, self.parent_ids,
this_tgt_cache_indirection,
self.beam_hyps_output_ids_cba,
self.beam_hyps_seq_len_cba,
self.beam_hyps_cum_log_probs_cba,
self.beam_hyps_normed_scores_cba,
self.beam_hyps_log_probs_cba,
self.beam_hyps_min_normed_scores,
self.beam_hyps_num_beams, self.beam_hyps_is_done,
scfg.use_beam_hyps)
if stopping_criteria is not None and not should_stop.item():
final_output_ids = self.finalize_decoder(
context_lengths,
batch_size,
beam_width,
scfg,
in_progress=True)
# keep the shape as same as huggingface stopping_criteria
final_output_ids_ = final_output_ids.reshape(
-1, final_output_ids.size(-1))
should_stop[0] = stopping_criteria(
step, final_output_ids_, logits)
if self.runtime._is_profiling():
if not context.report_to_profiler():
logger.warning("Runtime report to profiler failed.")
self.runtime._insert_step_to_profiler(step)
if self.mapping.has_pp():
should_stop = self.pp_communicate_new_tokens(
should_stop, this_tgt_cache_indirection,
self.sequence_length_buffer)
if self.paged_kv_cache and self.has_attn_layers:
if (step >= self.max_new_tokens - 1) or (should_stop is not None
and should_stop.item()):
# Free all blocks in all sequences.
# With in-flight batching and while loop we'll free some sequences, when they are done
self.kv_cache_manager.step([True] * batch_size)
if self.cross_attention:
self.cross_kv_cache_manager.step([True] * batch_size)
if self.debug_mode:
self.dump_debug_buffers(step)
if next_step_tensors is not None:
self.debug_buffer = {
name: tensor.to_torch()
for name, tensor in next_step_tensors.items()
}
return should_stop, next_step_tensors, tasks, context_lengths, host_context_lengths, attention_mask, context_logits, generation_logits, encoder_input_lengths
def dump_debug_buffers(self, step: int) -> None:
if self.debug_tensors_to_save is not None:
# restricted written tensors according to filter
debug_tensor_names = copy.deepcopy(list(self.debug_buffer.keys()))
for k in debug_tensor_names:
if all([kk not in k for kk in self.debug_tensors_to_save]):
self.debug_buffer.pop(k)
debug_dir = Path(
f"tllm_debug/PP_{self.mapping.pp_rank}/TP_{self.mapping.tp_rank}")
debug_dir.mkdir(parents=True, exist_ok=True)
for name, t in self.debug_buffer.items():
# convert tensor name to valid file name
print("Saving: ", name)
fname = name.replace("/", ".")
t = torch_to_numpy(t.float())
np.save(debug_dir / f"{fname}-step{step}.npy", t)
txt_format = "%d" if t.dtype in [np.int32, np.int8] else '%.18e'
np.savetxt(
debug_dir / f"{fname}-step{step}.txt",
t.reshape(-1, t.shape[-1]), # savetxt accepts 2 dims only
fmt=txt_format)
def decode_regular(self,
batch_size: int,
scfg: SamplingConfig,
sequence_lengths: torch.Tensor,
context_lengths: torch.Tensor,
host_context_lengths,
max_context_length: int,
beam_width: int,
cache_indirections: list,
input_ids: torch.Tensor,
hidden_states: torch.Tensor,
prompt_embedding_table: torch.Tensor,
tasks: torch.Tensor,
prompt_vocab_size: torch.Tensor,
ite: int,
sequence_limit_lengths: torch.Tensor,
stop_words_data,
bad_words_data,
output_sequence_lengths: bool = False,
return_dict: bool = False,
encoder_output: torch.Tensor = None,
encoder_input_lengths: torch.Tensor = None,
stopping_criteria: StoppingCriteria = None,
logits_processor: LogitsProcessor = None,
cross_attention_mask: torch.Tensor = None,
**kwargs):
kv_cache_block_offsets = None
host_kv_cache_block_offsets = None
cross_kv_cache_block_offsets = None
host_cross_kv_cache_block_offsets = None
attention_mask = None
outputs_context_logits = None
outputs_generation_logits = []
def get_outputs_dict(output_ids, num_steps=self.max_new_tokens):
outputs = {}
outputs['output_ids'] = output_ids
if scfg.output_log_probs:
outputs['log_probs'] = self.log_probs
if scfg.output_cum_log_probs:
outputs['cum_log_probs'] = self.cum_log_probs
if output_sequence_lengths:
outputs[
'sequence_lengths'] = self.sequence_length_buffer.reshape(
[batch_size, beam_width])
if self.gather_context_logits:
outputs['context_logits'] = outputs_context_logits
if self.gather_generation_logits:
outputs['generation_logits'] = outputs_generation_logits
if self.is_medusa_mode or self.is_redrafter_mode:
outputs['steps_to_finish'] = num_steps
if self.is_medusa_mode:
outputs['medusa_output_tokens'] = self.medusa_output_tokens
outputs['accept_lengths'] = self.accept_lengths
if self.medusa_temperature != 0.0:
outputs['medusa_output_logits'] = self.medusa_output_logits
return outputs
benchmark_profiler = kwargs.get('benchmark_profiler', None)
generation_phase_step_count = 0
if benchmark_profiler is not None and benchmark_profiler.is_recording_perf_profile:
self.runtime._set_profiler()
def profile_fn(benchmark_profiler_obj, step_count):
if benchmark_profiler_obj is not None:
benchmark_profiler_obj.record_cuda_event('last_token')
benchmark_profiler_obj.record_elapsed_time(
'first_token', 'last_token', 'generation_time')
benchmark_profiler_obj.add_aux_info('generation_step_count',
step_count)
next_step_tensors = None
for step in range(0, self.max_new_tokens):
should_stop, next_step_tensors, tasks, context_lengths, host_context_lengths, attention_mask, context_logits, generation_logits, encoder_input_lengths = self.handle_per_step(
cache_indirections, step, batch_size, max_context_length,
beam_width, input_ids, hidden_states, scfg,
kv_cache_block_offsets, host_kv_cache_block_offsets,
cross_kv_cache_block_offsets, host_cross_kv_cache_block_offsets,
prompt_embedding_table, tasks, context_lengths,
host_context_lengths, attention_mask, cross_attention_mask,
prompt_vocab_size, ite, sequence_limit_lengths,
sequence_lengths, next_step_tensors, stop_words_data,
bad_words_data, encoder_output, encoder_input_lengths,
stopping_criteria, logits_processor, **kwargs)
if step == 0:
if benchmark_profiler is not None:
benchmark_profiler.record_cuda_event('first_token')
else:
generation_phase_step_count = generation_phase_step_count + 1
if self.mapping.is_last_pp_rank():
if step == 0 and self.gather_context_logits:
outputs_context_logits = context_logits
if self.gather_generation_logits:
outputs_generation_logits.append(generation_logits)
if should_stop is not None and should_stop.item():
profile_fn(benchmark_profiler, generation_phase_step_count)
if self.is_medusa_mode or self.is_redrafter_mode:
# just hack away for now
final_output_ids = self.output_ids.clone().unsqueeze(1)
final_output_ids = final_output_ids[:, :, :self.
max_seq_length -
self._model_config.
max_medusa_tokens]
else:
final_output_ids = self.finalize_decoder(
context_lengths, batch_size, beam_width, scfg)
if self.mapping.is_first_pp_rank():
if return_dict:
return get_outputs_dict(final_output_ids, step + 1)
else:
return final_output_ids
elif self.mapping.is_last_pp_rank():
outputs = {}
if self.gather_context_logits:
outputs['context_logits'] = outputs_context_logits
if self.gather_generation_logits:
outputs['generation_logits'] = outputs_generation_logits
return outputs
else:
return None
assert not self.is_medusa_mode and not self.is_redrafter_mode, "the custom decoder doesn't support medusa/redrafter."
profile_fn(benchmark_profiler, generation_phase_step_count)
final_output_ids = self.finalize_decoder(context_lengths, batch_size,
beam_width, scfg)
if self.mapping.is_first_pp_rank():
if return_dict:
return get_outputs_dict(final_output_ids)
else:
return final_output_ids
elif self.mapping.is_last_pp_rank():
outputs = {}
if self.gather_context_logits:
outputs['context_logits'] = outputs_context_logits
if self.gather_generation_logits:
outputs['generation_logits'] = outputs_generation_logits
return outputs
else:
return None
def decode_stream(self,
batch_size: int,
scfg: SamplingConfig,
sequence_lengths: torch.Tensor,
context_lengths: torch.Tensor,
host_context_lengths,
max_context_length: int,
beam_width: int,
cache_indirections: list,
input_ids: torch.Tensor,
hidden_states: torch.Tensor,
prompt_embedding_table: torch.Tensor,
tasks: torch.Tensor,
prompt_vocab_size: torch.Tensor,
ite: int,
sequence_limit_lengths: torch.Tensor,
stop_words_data,
bad_words_data,
output_sequence_lengths: bool = False,
return_dict: bool = False,
encoder_output: torch.Tensor = None,
encoder_input_lengths: torch.Tensor = None,
stopping_criteria: StoppingCriteria = None,
logits_processor: LogitsProcessor = None,
cross_attention_mask: torch.Tensor = None,
**kwargs):
kv_cache_block_offsets = None
host_kv_cache_block_offsets = None
cross_kv_cache_block_offsets = None
host_cross_kv_cache_block_offsets = None
attention_mask = None
outputs_context_logits = None
def get_outputs_dict(output_ids):
outputs = {}
outputs['output_ids'] = output_ids
if output_sequence_lengths:
outputs[
'sequence_lengths'] = self.sequence_length_buffer.reshape(
[batch_size, beam_width])
if self.gather_context_logits:
outputs['context_logits'] = outputs_context_logits
return outputs
next_step_tensors = None
for step in range(0, self.max_new_tokens):
should_stop, next_step_tensors, tasks, context_lengths, host_context_lengths, attention_mask, context_logits, generation_logits, encoder_input_lengths = self.handle_per_step(
cache_indirections, step, batch_size, max_context_length,
beam_width, input_ids, hidden_states, scfg,
kv_cache_block_offsets, host_kv_cache_block_offsets,
cross_kv_cache_block_offsets, host_cross_kv_cache_block_offsets,
prompt_embedding_table, tasks, context_lengths,
host_context_lengths, attention_mask, cross_attention_mask,
prompt_vocab_size, ite, sequence_limit_lengths,
sequence_lengths, next_step_tensors, stop_words_data,
bad_words_data, encoder_output, encoder_input_lengths,
stopping_criteria, logits_processor)
if step == 0:
outputs_context_logits = context_logits
if should_stop is not None:
final_output_ids = self.finalize_decoder(context_lengths,
batch_size,
beam_width,
scfg,
in_progress=True)
if self.mapping.is_first_pp_rank():
if return_dict:
yield get_outputs_dict(final_output_ids)
else:
yield final_output_ids
else:
yield None
if should_stop.item():
return
final_output_ids = self.finalize_decoder(context_lengths, batch_size,
beam_width, scfg)
if self.mapping.is_first_pp_rank():
if return_dict:
yield get_outputs_dict(final_output_ids)
else:
yield final_output_ids
else:
yield None
def decode_batch(self,
input_ids: Sequence[torch.Tensor],
sampling_config: SamplingConfig,
streaming: bool = False,
**kwargs):
input_ids, context_lengths = _prepare_input_ids(input_ids)
return self.decode(input_ids,
context_lengths,
sampling_config,
streaming=streaming,
**kwargs)
# As dynamic_decoder uses torch's current stream, we must ensure it runs on the same stream that
# dynamic_decoder was set up with
@cuda_stream_guard
def decode(self,
input_ids: torch.Tensor,
context_lengths: torch.Tensor,
sampling_config: SamplingConfig,
prompt_embedding_table: torch.Tensor = None,
tasks: torch.Tensor = None,
prompt_vocab_size: torch.Tensor = None,
stop_words_list=None,
bad_words_list=None,
streaming: bool = False,
output_sequence_lengths: bool = False,
return_dict: bool = False,
encoder_output: torch.Tensor = None,
encoder_input_lengths: torch.Tensor = None,
stopping_criteria: StoppingCriteria = None,
logits_processor: LogitsProcessor = None,
cross_attention_mask: torch.Tensor = None,
**kwargs):
scfg = sampling_config
batch_size = context_lengths.size(0)
beam_width = scfg.num_beams
max_context_length = torch.max(context_lengths).item()
host_context_lengths = context_lengths.cpu()
assert batch_size == self.batch_size, \
"Given batch size is different from the one used in setup()," \
"rerun the setup function with the new batch size to avoid buffer overflow."
assert max_context_length <= self.max_context_length, \
"Given input length is large then the one used in setup()," \
"rerun the setup function with the new max_context_length to avoid buffer overflow."
assert beam_width == self.beam_width, \
"Given beam width is different from the one used in setup()," \
"rerun the setup function with the new beam width to avoid buffer overflow."
assert self.sink_token_length <= torch.min(context_lengths).item(), \
"Given sink token length is larger than shortest context length," \
"rerun the setup function with a smaller sink token length."
ite = 0 # index of local batches, will always be 0 if pp_size = 1
if self.remove_input_padding and input_ids.dim() == 2:
assert input_ids.shape[
0] == 1, "Packed 2D input must have shape [1, <sum of input lengths>]"
input_ids = input_ids.squeeze(0)
self.__setup_decoder(input_ids, scfg, host_context_lengths)
if not self.buffer_allocated:
raise RuntimeError('Buffer not allocated, please call setup first!')
sequence_limit_lengths = torch.full((batch_size, 1),
self.max_seq_length,
dtype=torch.int32,
device=self.device)
# Sequence_lengths for the dynamic decoder still has the input paddings.
sequence_lengths = torch.full((batch_size * beam_width, 1),
max_context_length,
dtype=torch.int32,
device=self.device)
cache_indirections = [
torch.full((
batch_size,
beam_width,
self.max_attention_window_size,
),
0,
dtype=torch.int32,
device=self.device),
torch.full((
batch_size,
beam_width,
self.max_attention_window_size,
),
0,
dtype=torch.int32,
device=self.device)
] # ping-pong buffers
hidden_states = None
if self.mapping.has_pp():
max_num_tokens = max(batch_size * beam_width,
batch_size * self.max_seq_length)
hidden_size = self.hidden_size * self.mapping.tp_size
hidden_states = torch.zeros((1, max_num_tokens, hidden_size))
# Init KV cache block manager
if self.paged_kv_cache and self.has_attn_layers:
num_blocks, max_blocks_per_seq = self._get_num_paged_blocks(
self.max_attention_window_size, self.sink_token_length,
self.use_one_more_block)
self.buffer[f'host_kv_cache_pool_pointers'] = torch.tensor(
[self.kv_cache_pool.data_ptr(), 0], dtype=torch.int64)
block_size = self.num_heads_kv * self.tokens_per_block * self.head_size
self.kv_cache_manager = KVCacheManager(
num_layers=self.num_attn_layers,
num_blocks=num_blocks,
block_size=block_size,
tokens_per_block=self.tokens_per_block,
max_blocks_per_seq=max_blocks_per_seq,
max_attention_window_size=self.max_attention_window_size,
sink_token_len=self.sink_token_length,
beam_width=beam_width,
use_one_more_block=self.use_one_more_block)
if self.cross_attention:
cross_num_blocks, max_cross_blocks_per_seq = self._get_num_paged_blocks(
self.encoder_max_input_length,
sink_token_length=0,
use_one_more_block=False)
self.buffer[
f'host_cross_kv_cache_pool_pointers'] = torch.tensor(
[self.cross_kv_cache_pool.data_ptr(), 0],
dtype=torch.int64)
cross_block_size = self.num_heads_kv * self.tokens_per_block * self.head_size
self.cross_kv_cache_manager = KVCacheManager(
num_layers=self.num_layers,
num_blocks=cross_num_blocks,
block_size=cross_block_size,
tokens_per_block=self.tokens_per_block,
max_blocks_per_seq=max_cross_blocks_per_seq,
max_attention_window_size=self.encoder_max_input_length,
sink_token_len=self.sink_token_length,
beam_width=beam_width,
use_one_more_block=False)
# Add sequences to the manager
for bi in range(batch_size):
generation_sequence = GenerationSequence(seq_idx=bi,
batch_idx=bi)
self.kv_cache_manager.add_sequence(generation_sequence,
max_context_length)
if self.cross_attention:
cross_generation_sequence = GenerationSequence(seq_idx=bi,
batch_idx=bi)
self.cross_kv_cache_manager.add_sequence(
cross_generation_sequence,
self.encoder_max_input_length,
always_share_across_beam=True)
# cross attention paged kv cache should always share the context blocks across beams
# due to the fact that we are not adding new key/value cache to cross kv in generation
if self.is_medusa_mode or self.is_redrafter_mode:
if self.quant_mode.has_kv_cache_quant():
# Since torch does not support fp8 now, using int8 here.
kv_cache_type = torch.int8
else:
kv_cache_type = self.dtype if self.paged_kv_cache else self._tensor_dtype(
f'present_key_value_{self.first_layer}')
self.history_max_seq_length = [max_context_length]
self.kv_cache_updater = KVCacheUpdater()
assert not self.cross_attention
assert self.use_gpt_attention_plugin
if self.paged_kv_cache:
self.kv_cache_updater.init_paged_kv_cache(
self.num_layers, self.num_heads_kv, self.head_size,
kv_cache_type, self.kv_cache_manager,
self.buffer[f'host_kv_cache_pool_pointers'])
else:
past_key_value_list = [
self.buffer[f'present_key_value_{i}']
for i in range(self.first_layer, self.last_layer)
]
self.kv_cache_updater.init_linear_kv_cache(
self.num_layers, self.num_heads_kv, self.head_size,
kv_cache_type, past_key_value_list)
stop_words_lens = None
stop_words_list_ptrs = None
max_stop_words_len = 0
if stop_words_list is not None:
stop_words_list = torch.from_numpy(stop_words_list).contiguous().to(
'cuda')
max_stop_words_len = stop_words_list.shape[2]
stop_words_lens = torch.full((batch_size, ),
max_stop_words_len,
dtype=torch.int32).to('cuda')
stop_words_list_ptrs = torch.zeros((batch_size), dtype=torch.int64)
for bi in range(batch_size):
stop_words_list_ptrs[bi] = stop_words_list.data_ptr(
) + bi * 2 * max_stop_words_len * stop_words_list.element_size(
)
stop_words_list_ptrs = stop_words_list_ptrs.to('cuda')
stop_words_data = (stop_words_list_ptrs, stop_words_lens,
max_stop_words_len)
bad_words_lens = None
bad_words_list_ptrs = None
max_bad_words_len = 0
if bad_words_list is not None:
bad_words_list = torch.from_numpy(bad_words_list).contiguous().to(
'cuda')
max_bad_words_len = bad_words_list.shape[2]
bad_words_lens = torch.full((batch_size, ),
max_bad_words_len,
dtype=torch.int32).to('cuda')
bad_words_list_ptrs = torch.zeros((batch_size), dtype=torch.int64)
for bi in range(batch_size):
bad_words_list_ptrs[bi] = bad_words_list.data_ptr(
) + bi * 2 * max_bad_words_len * bad_words_list.element_size()
bad_words_list_ptrs = bad_words_list_ptrs.to('cuda')
bad_words_data = (bad_words_list_ptrs, bad_words_lens,
max_bad_words_len)
# start context phase
if streaming:
return self.decode_stream(
batch_size, scfg, sequence_lengths, context_lengths,
host_context_lengths, max_context_length, beam_width,
cache_indirections, input_ids, hidden_states,
prompt_embedding_table, tasks, prompt_vocab_size, ite,
sequence_limit_lengths, stop_words_data, bad_words_data,
output_sequence_lengths, return_dict, encoder_output,
encoder_input_lengths, stopping_criteria, logits_processor,
cross_attention_mask, **kwargs)
else:
return self.decode_regular(
batch_size, scfg, sequence_lengths, context_lengths,
host_context_lengths, max_context_length, beam_width,
cache_indirections, input_ids, hidden_states,
prompt_embedding_table, tasks, prompt_vocab_size, ite,
sequence_limit_lengths, stop_words_data, bad_words_data,
output_sequence_lengths, return_dict, encoder_output,
encoder_input_lengths, stopping_criteria, logits_processor,
cross_attention_mask, **kwargs)
class ChatGLMGenerationSession(GenerationSession):
def __init__(
self,
model_config: ModelConfig,
engine_buffer,
mapping: Mapping,
debug_mode=False,
debug_tensors_to_save=None,
cuda_graph_mode=False,
stream: torch.cuda.Stream = None,
):
super().__init__(
model_config,
engine_buffer,
mapping,
debug_mode,
debug_tensors_to_save,
cuda_graph_mode,
stream,
)
self.mask_index_tensor = None
def _prepare_context_inputs(self, batch_size, context_lengths,
use_gpt_attention_plugin, remove_input_padding,
**kwargs):
max_context_length = kwargs.pop('max_context_length')
last_token_ids = context_lengths.detach().clone()
if remove_input_padding:
input_lengths_acc = torch.cumsum(torch.cat(
[torch.IntTensor([0]).cuda(), context_lengths], dim=0),
dim=0)
position_ids = torch.zeros([2, input_lengths_acc[-1]],
dtype=torch.int32)
for i in range(batch_size):
position_ids[0, input_lengths_acc[i]:input_lengths_acc[
i + 1]] = torch.arange(0,
context_lengths[i],
dtype=torch.int32)
position_ids[0, input_lengths_acc[i + 1] -
1] = context_lengths[i] - 2
position_ids[1, input_lengths_acc[i + 1] - 1] = 1
position_ids = position_ids.int().cuda()
last_token_ids = torch.cumsum(last_token_ids, dim=0).int().cuda()
# specialization for GLM series models
if kwargs["pad_id"] in [50256, 50259]:
if kwargs["pad_id"] == 50256: # glm_2b / glm_10b
mask_ids = [50260, 50264, 50263]
else: # glm_10b_chinese / glm_large_chinese
mask_ids = [50003, 50008, 50009]
self.mask_index_tensor = \
torch.zeros([batch_size], dtype=torch.int32)
position_ids = position_ids.cpu()
for i in range(batch_size):
length = context_lengths[i]
input_ids = kwargs["input_ids"][
0:context_lengths[i]] if i == 0 else kwargs[
"input_ids"][sum(context_lengths[0:i]
):sum(context_lengths[0:i]) +
length]
mask_index = [
torch.where(input_ids == id)[0].int() for id in mask_ids
]
tail_index = torch.Tensor([max_context_length]).int().cuda()
mask_index.append(tail_index)
mask_index = torch.cat(mask_index, dim=0).min()
self.mask_index_tensor[i] = int(mask_index)
position_ids[0][sum(context_lengths[0:i + 1]) -
1] = int(mask_index)
position_ids = position_ids.cuda()
else:
position_ids = torch.zeros([batch_size, 2, max_context_length],
dtype=torch.int32)
position_ids[:, 0, :] = torch.arange(max_context_length)
# specialization for GLM series models
if kwargs["pad_id"] in [50256, 50259]:
if kwargs["pad_id"] == 50256: # glm_2b / glm_10b
mask_ids = [50260, 50264, 50263]
else: # glm_10b_chinese / glm_large_chinese
mask_ids = [50003, 50008, 50009]
self.mask_index_tensor = \
torch.zeros([batch_size], dtype=torch.int32)
for i in range(batch_size):
length = context_lengths[i]
input_ids = kwargs["input_ids"][i]
mask_index = [
torch.where(input_ids == id)[0].int() for id in mask_ids
]
tail_index = torch.Tensor([max_context_length]).int().cuda()
mask_index.append(tail_index)
mask_index = torch.cat(mask_index, dim=0).min()
position_ids[i, 0, length - 1] = int(mask_index)
position_ids[i, 1, length - 1] = 1
self.mask_index_tensor[i] = int(mask_index)
else:
for i in range(batch_size):
length = context_lengths[i]
position_ids[i, 0, length - 1] = length - 2
position_ids[i, 1, length - 1] = 1
position_ids = position_ids.cuda()
perf_knob_tensor_size = 16
context_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
dtype=torch.int64)
inputs = {
'position_ids': position_ids,
'last_token_ids': last_token_ids,
'host_runtime_perf_knobs': context_runtime_perf_knobs
}
if not use_gpt_attention_plugin:
attention_mask = torch.zeros((batch_size, 1))
inputs['attention_mask'] = attention_mask
return inputs
def _prepare_generation_inputs(self, batch_size, context_lengths,
use_gpt_attention_plugin,
remove_input_padding, **kwargs):
step = kwargs.pop('step')
num_beams = kwargs.pop('num_beams')
last_token_ids = torch.ones_like(context_lengths)
if remove_input_padding:
def _tile_beam_width_chatglm(tensor: torch.Tensor, num_beams: int):
new_shape = np.array(tensor.shape)
new_shape[1] = new_shape[1] * num_beams
tile_size = np.ones(new_shape.shape, dtype=np.int32)
tile_size = np.insert(tile_size, 2, num_beams)
new_tensor = torch.unsqueeze(tensor, 2)
new_tensor = new_tensor.tile(tile_size.tolist())
new_tensor = new_tensor.reshape(new_shape.tolist())
return new_tensor
position_ids = torch.zeros([2, batch_size], dtype=torch.int32)
for i in range(batch_size):
position_ids[0, i] = context_lengths[i * num_beams] - 2
position_ids[1, i] = step + 2
position_ids = _tile_beam_width_chatglm(position_ids, num_beams)
position_ids = position_ids.int().cuda()
last_token_ids = torch.cumsum(last_token_ids, dim=0).int().cuda()
if self.mask_index_tensor is not None: # specialization for GLM series models
position_ids = position_ids.cpu()
for i in range(batch_size):
position_ids[0][i] = self.mask_index_tensor[i]
position_ids = position_ids.cuda()
else:
data = []
if self.mask_index_tensor is not None: # specialization for GLM series models
for i in range(batch_size):
data.append([[self.mask_index_tensor[i]], [step + 2]])
else:
for i in range(batch_size):
data.append([[context_lengths[i * num_beams] - 2],
[step + 2]])
position_ids = torch.tensor(data, dtype=torch.int32, device='cuda')
position_ids = _tile_beam_width(position_ids, num_beams)
perf_knob_tensor_size = 16
generation_runtime_perf_knobs = torch.tensor([-1] *
perf_knob_tensor_size,
dtype=torch.int64)
inputs = {
'position_ids': position_ids,
'last_token_ids': last_token_ids,
'host_runtime_perf_knobs': generation_runtime_perf_knobs
}
if not use_gpt_attention_plugin:
attention_mask = torch.zeros((batch_size, 1))
inputs['attention_mask'] = attention_mask
return inputs
class QWenForCausalLMGenerationSession(GenerationSession):
def __init__(
self,
model_config: ModelConfig,
engine_buffer,
mapping: Mapping,
debug_mode=False,
debug_tensors_to_save=None,
cuda_graph_mode=False,
stream: torch.cuda.Stream = None,
global_max_input_length: int = 2048,
global_max_output_length: int = 4096,
):
super().__init__(model_config,
engine_buffer,
mapping,
debug_mode,
debug_tensors_to_save=debug_tensors_to_save,
cuda_graph_mode=cuda_graph_mode,
stream=stream)
self.global_max_input_length = global_max_input_length
self.global_max_output_length = global_max_output_length
def generate(
self,
input_ids: torch.Tensor,
input_lengths: torch.Tensor,
sampling_config: SamplingConfig,
max_new_tokens: int,
runtime_rank: int = 0,
):
max_input_length = torch.max(input_lengths).item()
max_new_tokens = min(max_new_tokens,
self.global_max_output_length - max_input_length)
# setup batch_size, max_input_length, max_output_len
self.setup(batch_size=input_lengths.size(0),
max_context_length=max_input_length,
max_new_tokens=max_new_tokens)
output_ids = self.decode(input_ids, input_lengths, sampling_config)
with torch.no_grad():
torch.cuda.synchronize()
if runtime_rank == 0:
outputs = output_ids[:, 0, :]
return outputs
|