|
{ |
|
"best_metric": 1.2963756322860718, |
|
"best_model_checkpoint": "bert-propaganda-ner/checkpoint-1750", |
|
"epoch": 2.0, |
|
"eval_steps": 500, |
|
"global_step": 1750, |
|
"is_hyper_param_search": false, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 0.57, |
|
"grad_norm": 3.605520486831665, |
|
"learning_rate": 4.714285714285714e-05, |
|
"loss": 1.2802, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.7176097303014278, |
|
"eval_f1": 0.09410755148741418, |
|
"eval_loss": 1.2981841564178467, |
|
"eval_precision": 0.28986784140969163, |
|
"eval_recall": 0.05617210175857948, |
|
"eval_runtime": 4.2298, |
|
"eval_samples_per_second": 217.743, |
|
"eval_steps_per_second": 27.425, |
|
"step": 875 |
|
}, |
|
{ |
|
"epoch": 1.14, |
|
"grad_norm": 2.260868787765503, |
|
"learning_rate": 4.428571428571428e-05, |
|
"loss": 1.1118, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 1.71, |
|
"grad_norm": 7.614594459533691, |
|
"learning_rate": 4.1428571428571437e-05, |
|
"loss": 0.9205, |
|
"step": 1500 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.6880236021041498, |
|
"eval_f1": 0.16797458893871453, |
|
"eval_loss": 1.2963756322860718, |
|
"eval_precision": 0.18547555188776563, |
|
"eval_recall": 0.15349154857435549, |
|
"eval_runtime": 4.3987, |
|
"eval_samples_per_second": 209.378, |
|
"eval_steps_per_second": 26.371, |
|
"step": 1750 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 8750, |
|
"num_input_tokens_seen": 0, |
|
"num_train_epochs": 10, |
|
"save_steps": 500, |
|
"total_flos": 553357099061862.0, |
|
"train_batch_size": 8, |
|
"trial_name": null, |
|
"trial_params": null |
|
} |
|
|