File size: 1,671 Bytes
61fbd36
 
26e628b
61fbd36
26e628b
61fbd36
 
 
 
 
 
26e628b
61fbd36
 
 
 
 
 
26e628b
61fbd36
26e628b
61fbd36
26e628b
 
61fbd36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e628b
 
61fbd36
 
 
 
 
 
26e628b
 
 
 
61fbd36
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper-large-v3-atc
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper-large-v3-atc

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the atc_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2187
- Wer: 7.4754

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.19          | 0.8446 | 1000 | 0.2450          | 9.4369 |
| 0.1105        | 1.6892 | 2000 | 0.2092          | 8.4916 |
| 0.047         | 2.5338 | 3000 | 0.2069          | 7.9794 |
| 0.017         | 3.3784 | 4000 | 0.2187          | 7.4754 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1