asdfasdfdsafdsa commited on
Commit
dba3f26
·
verified ·
1 Parent(s): 464ed68

Add comprehensive model card documentation

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - geometry
5
+ - problem-solving
6
+ - multi-modal
7
+ - pytorch
8
+ ---
9
+
10
+ # PGPS: A Neural Geometric Solver
11
+
12
+ ## Model Description
13
+
14
+ PGPS (Plane Geometry Problem Solver) is a neural geometric solver that uses multi-modal information through structural and semantic pre-training to solve plane geometry problems. This model was introduced in the IJCAI 2023 paper and represents the pre-trained language model component of the PGPSNet architecture.
15
+
16
+ ## Model Details
17
+
18
+ - **Model Type:** Pre-trained Language Model for Geometric Problem Solving
19
+ - **Model File:** `LM_MODEL.pth`
20
+ - **File Size:** ~64MB
21
+ - **Framework:** PyTorch
22
+ - **Paper:** [PGPS: A Neural Geometric Solver at IJCAI 2023](https://www.ijcai.org/proceedings/2023/)
23
+ - **Original Repository:** [https://github.com/mingliangzhang2018/PGPS](https://github.com/mingliangzhang2018/PGPS)
24
+
25
+ ## Intended Use
26
+
27
+ This model is designed for:
28
+ - Solving plane geometry problems
29
+ - Parsing geometric diagrams
30
+ - Understanding textual clauses in geometry problems
31
+ - Generating solution programs for geometric problems
32
+
33
+ ## Requirements
34
+
35
+ - Python 3.8
36
+ - PyTorch 1.7.1
37
+ - CUDA 10.2
38
+ - One GTX-RTX or two TITAN Xp GPUs (for training)
39
+
40
+ ## Installation
41
+
42
+ 1. Clone the original repository:
43
+ ```bash
44
+ git clone https://github.com/mingliangzhang2018/PGPS.git
45
+ cd PGPS
46
+ ```
47
+
48
+ 2. Install dependencies:
49
+ ```bash
50
+ pip install -r requirements.txt
51
+ ```
52
+
53
+ 3. Download this pre-trained model and place it in the appropriate directory.
54
+
55
+ ## Usage
56
+
57
+ ### Training with Pre-trained Model
58
+
59
+ ```python
60
+ python start.py --dataset Geometry3K --use_MLM_pretrain
61
+ ```
62
+
63
+ ### Evaluation
64
+
65
+ ```python
66
+ python start.py --dataset Geometry3K --evaluate_only --eval_method completion
67
+ ```
68
+
69
+ ## Dataset
70
+
71
+ The model works with the PGPS9K dataset, which contains:
72
+ - Diagram annotations
73
+ - Solution programs
74
+ - Multi-modal geometric problem data
75
+
76
+ Download the dataset from the [CASIA-PGPS9K homepage](https://sites.google.com/view/pgps9k).
77
+
78
+ ## Citation
79
+
80
+ If you use this model in your research, please cite:
81
+
82
+ ```bibtex
83
+ @inproceedings{zhang2023pgps,
84
+ title={PGPS: A Neural Geometric Solver},
85
+ author={Zhang, Mingliang and others},
86
+ booktitle={Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)},
87
+ year={2023}
88
+ }
89
+ ```
90
+
91
+ ## License
92
+
93
+ Apache 2.0
94
+
95
+ ## Authors
96
+
97
+ The original PGPS model was developed by Mingliang Zhang and colleagues. This Hugging Face repository is a mirror of the pre-trained model from the [official GitHub repository](https://github.com/mingliangzhang2018/PGPS).
98
+
99
+ ## Acknowledgments
100
+
101
+ Special thanks to the PGPS team for making their pre-trained models publicly available.