asdc commited on
Commit
ecaa5d9
·
1 Parent(s): 048b65e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: beto-sentiment-analysis-finetuned-ner
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # beto-sentiment-analysis-finetuned-ner
18
+
19
+ This model is a fine-tuned version of [finiteautomata/beto-sentiment-analysis](https://huggingface.co/finiteautomata/beto-sentiment-analysis) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.9250
22
+ - Precision: 0.5603
23
+ - Recall: 0.6436
24
+ - F1: 0.5991
25
+ - Accuracy: 0.9863
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 8e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 24
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | 1.4102 | 1.0 | 3 | 1.2732 | 0.0455 | 0.0198 | 0.0276 | 0.9723 |
57
+ | 0.7776 | 2.0 | 6 | 0.9025 | 0.1056 | 0.1485 | 0.1235 | 0.9663 |
58
+ | 0.6861 | 3.0 | 9 | 0.7874 | 0.1176 | 0.1980 | 0.1476 | 0.9694 |
59
+ | 0.2837 | 4.0 | 12 | 0.8528 | 0.1067 | 0.2376 | 0.1472 | 0.9534 |
60
+ | 0.3182 | 5.0 | 15 | 0.7798 | 0.2360 | 0.3762 | 0.2901 | 0.9729 |
61
+ | 0.1673 | 6.0 | 18 | 0.8645 | 0.1461 | 0.2574 | 0.1864 | 0.9604 |
62
+ | 0.2065 | 7.0 | 21 | 0.8130 | 0.2941 | 0.5446 | 0.3819 | 0.9765 |
63
+ | 0.0794 | 8.0 | 24 | 0.6841 | 0.4276 | 0.6139 | 0.5041 | 0.9822 |
64
+ | 0.0543 | 9.0 | 27 | 0.7113 | 0.4104 | 0.5446 | 0.4681 | 0.9815 |
65
+ | 0.0278 | 10.0 | 30 | 0.7865 | 0.4565 | 0.6238 | 0.5272 | 0.9833 |
66
+ | 0.0598 | 11.0 | 33 | 0.8356 | 0.4155 | 0.5842 | 0.4856 | 0.9824 |
67
+ | 0.0108 | 12.0 | 36 | 0.8104 | 0.4460 | 0.6139 | 0.5167 | 0.9826 |
68
+ | 0.0235 | 13.0 | 39 | 0.7986 | 0.5194 | 0.6634 | 0.5826 | 0.9844 |
69
+ | 0.0134 | 14.0 | 42 | 0.8175 | 0.6182 | 0.6733 | 0.6445 | 0.9865 |
70
+ | 0.0124 | 15.0 | 45 | 0.8575 | 0.6036 | 0.6634 | 0.6321 | 0.9875 |
71
+ | 0.0049 | 16.0 | 48 | 0.8822 | 0.6019 | 0.6436 | 0.6220 | 0.9871 |
72
+ | 0.0097 | 17.0 | 51 | 0.8696 | 0.5556 | 0.6436 | 0.5963 | 0.9862 |
73
+ | 0.0067 | 18.0 | 54 | 0.8728 | 0.5410 | 0.6535 | 0.5919 | 0.9859 |
74
+ | 0.0045 | 19.0 | 57 | 0.8807 | 0.5159 | 0.6436 | 0.5727 | 0.9848 |
75
+ | 0.004 | 20.0 | 60 | 0.8938 | 0.52 | 0.6436 | 0.5752 | 0.9851 |
76
+ | 0.0038 | 21.0 | 63 | 0.9108 | 0.5203 | 0.6337 | 0.5714 | 0.9852 |
77
+ | 0.004 | 22.0 | 66 | 0.9243 | 0.5702 | 0.6436 | 0.6047 | 0.9864 |
78
+ | 0.0106 | 23.0 | 69 | 0.9261 | 0.5702 | 0.6436 | 0.6047 | 0.9865 |
79
+ | 0.004 | 24.0 | 72 | 0.9250 | 0.5603 | 0.6436 | 0.5991 | 0.9863 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.22.2
85
+ - Pytorch 1.12.1+cu113
86
+ - Datasets 2.5.2
87
+ - Tokenizers 0.12.1