--- license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Base Korean results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs ko_kr type: google/fleurs config: ko_kr split: test args: ko_kr metrics: - name: Wer type: wer value: 27.43440746610319 --- # Whisper Base Korean This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the google/fleurs ko_kr dataset. It achieves the following results on the evaluation set: - Loss: 0.4901 - Wer: 27.4344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3225 | 66.0 | 500 | 0.5002 | 27.9275 | | 0.1185 | 133.0 | 1000 | 0.4901 | 27.4344 | | 0.0468 | 199.0 | 1500 | 0.5047 | 27.4696 | | 0.0268 | 266.0 | 2000 | 0.5147 | 27.8746 | | 0.0189 | 333.0 | 2500 | 0.5218 | 28.0507 | | 0.0145 | 399.0 | 3000 | 0.5273 | 28.4733 | | 0.0121 | 466.0 | 3500 | 0.5318 | 28.6318 | | 0.0107 | 533.0 | 4000 | 0.5352 | 28.6846 | | 0.0098 | 599.0 | 4500 | 0.5376 | 28.8079 | | 0.0095 | 666.0 | 5000 | 0.5385 | 28.8079 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0