--- language: - zh license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Base Chinese-Mandarin results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 zh-CN type: mozilla-foundation/common_voice_16_0 config: zh-CN split: test args: zh-CN metrics: - name: Wer type: wer value: 89.13440626359287 --- # Whisper Base Chinese-Mandarin This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_16_0 zh-CN dataset. It achieves the following results on the evaluation set: - Loss: 0.5263 - Wer: 89.1344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.9769 | 1.02 | 500 | 0.6812 | 94.6411 | | 0.8022 | 3.0 | 1000 | 0.6262 | 92.5794 | | 0.9109 | 4.02 | 1500 | 0.6009 | 92.6229 | | 0.7132 | 6.0 | 2000 | 0.5845 | 92.3967 | | 0.8416 | 7.02 | 2500 | 0.5725 | 91.7616 | | 0.6527 | 9.0 | 3000 | 0.5636 | 91.4659 | | 0.812 | 10.02 | 3500 | 0.5561 | 90.8917 | | 0.6584 | 12.0 | 4000 | 0.5504 | 90.7960 | | 0.7825 | 13.02 | 4500 | 0.5455 | 90.4045 | | 0.6174 | 15.0 | 5000 | 0.5416 | 90.0565 | | 0.7925 | 16.02 | 5500 | 0.5381 | 90.0217 | | 0.5983 | 18.0 | 6000 | 0.5355 | 89.7695 | | 0.741 | 19.02 | 6500 | 0.5331 | 89.7086 | | 0.5831 | 21.0 | 7000 | 0.5312 | 89.4998 | | 0.7414 | 22.02 | 7500 | 0.5296 | 89.5259 | | 0.5902 | 24.0 | 8000 | 0.5284 | 89.3084 | | 0.7242 | 25.02 | 8500 | 0.5275 | 89.4041 | | 0.5815 | 27.0 | 9000 | 0.5268 | 89.1518 | | 0.717 | 28.02 | 9500 | 0.5265 | 89.2562 | | 0.5887 | 30.0 | 10000 | 0.5263 | 89.1344 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0