File size: 1,759 Bytes
72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 a7a818b 72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 72f1366 2388c39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
license: mit
tags:
- peft
- lora
- tinyllama
- dialogue summarization
- text2text-generation
datasets:
- dialogsum
metrics:
- rouge
---
# TinyLlama Dialogue Summarization Fine-Tuned Model
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) specifically for dialogue summarization tasks. It was fine-tuned using Parameter-Efficient Fine-Tuning (PEFT) with LoRA on the [DialogSum](https://huggingface.co/datasets/dialogsum) dataset.
## Model Details
* **Model Name:** TinyLlama-1.1B-Chat-v1.0 (fine-tuned)
* **Architecture:** Causal Language Model
* **Fine-tuning Method:** Parameter-Efficient Fine-Tuning (PEFT) with LoRA
* **Dataset:** DialogSum
* **Quantization:** 4-bit quantization was used during training to reduce memory consumption.
## Intended Uses
This model is intended for generating concise and accurate summaries of dialogues. It can be used for various applications, including:
* Summarizing customer service conversations.
* Generating meeting summaries.
* Creating summaries of chat logs.
## How to Use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
peft_model_id = "artisokka/tinyllama-dialogsum-finetuned"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model = PeftModel.from_pretrained(model, peft_model_id)
input_text = "Dialogue: ... (your dialogue here) ..."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device)
outputs = model.generate(input_ids, max_length=200)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(summary) |