create model card
Browse files
README.md
CHANGED
@@ -4,10 +4,23 @@ How to use:
|
|
4 |
from collections import deque
|
5 |
from bs4 import BeautifulSoup
|
6 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def dialog(context):
|
9 |
|
10 |
-
keyword = generate('keyword: ' + ' '.join(context), num_beams=2,)
|
11 |
knowlege = ''
|
12 |
if keyword != 'no_keywords':
|
13 |
resp = requests.get(f"https://en.wikipedia.org/wiki/{keyword}")
|
@@ -17,7 +30,7 @@ def dialog(context):
|
|
17 |
answ = generate(f'dialog: ' + knowlege + ' '.join(context), num_beams=3,
|
18 |
do_sample=True, temperature=1.1, encoder_no_repeat_ngram_size=5,
|
19 |
no_repeat_ngram_size=5,
|
20 |
-
max_new_tokens = 30)
|
21 |
return answ
|
22 |
|
23 |
context =deque([], maxlen=4)
|
|
|
4 |
from collections import deque
|
5 |
from bs4 import BeautifulSoup
|
6 |
import requests
|
7 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5Tokenizer
|
8 |
+
import torch
|
9 |
+
|
10 |
+
model_name = 'artemnech/dialoT5-base'
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
def generate(text, **kwargs):
|
15 |
+
model.eval()
|
16 |
+
inputs = tokenizer(text, return_tensors='pt').to(model.device)
|
17 |
+
with torch.no_grad():
|
18 |
+
hypotheses = model.generate(**inputs, **kwargs)
|
19 |
+
return tokenizer.decode(hypotheses[0], skip_special_tokens=True)
|
20 |
|
21 |
def dialog(context):
|
22 |
|
23 |
+
keyword = generate('keyword: ' + ' '.join(context), num_beams=2,)
|
24 |
knowlege = ''
|
25 |
if keyword != 'no_keywords':
|
26 |
resp = requests.get(f"https://en.wikipedia.org/wiki/{keyword}")
|
|
|
30 |
answ = generate(f'dialog: ' + knowlege + ' '.join(context), num_beams=3,
|
31 |
do_sample=True, temperature=1.1, encoder_no_repeat_ngram_size=5,
|
32 |
no_repeat_ngram_size=5,
|
33 |
+
max_new_tokens = 30)
|
34 |
return answ
|
35 |
|
36 |
context =deque([], maxlen=4)
|