File size: 8,506 Bytes
f9f1a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
// Copyright (c) 2016 Ryan Prichard
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
// Efficient integer->string conversion and string concatenation. The
// hexadecimal conversion may optionally have leading zeros. Other ways to
// convert integers to strings in C++ suffer these drawbacks:
//
// * std::stringstream: Inefficient, even more so than stdio.
//
// * std::to_string: No hexadecimal output, tends to use heap allocation, not
// supported on Cygwin.
//
// * stdio routines: Requires parsing a format string (inefficient). The
// caller *must* know how large the content is for correctness. The
// string-printf functions are extremely inconsistent on Windows. In
// particular, 64-bit integers, wide strings, and return values are
// problem areas.
//
// StringBuilderTest.cc is a standalone program that tests this header.
#ifndef WINPTY_STRING_BUILDER_H
#define WINPTY_STRING_BUILDER_H
#include <array>
#include <string>
#include <type_traits>
#ifdef STRING_BUILDER_TESTING
#include <assert.h>
#define STRING_BUILDER_CHECK(cond) assert(cond)
#else
#define STRING_BUILDER_CHECK(cond)
#endif // STRING_BUILDER_TESTING
#include "WinptyAssert.h"
template <typename C, size_t sz>
struct ValueString {
std::array<C, sz> m_array;
size_t m_offset;
size_t m_size;
const C *c_str() const { return m_array.data() + m_offset; }
const C *data() const { return m_array.data() + m_offset; }
size_t size() const { return m_size; }
std::basic_string<C> str() const {
return std::basic_string<C>(data(), m_size);
}
};
#ifdef _MSC_VER
// Disable an MSVC /SDL error that forbids unsigned negation. Signed negation
// invokes undefined behavior for INTxx_MIN, so unsigned negation is simpler to
// reason about. (We assume twos-complement in any case.)
#define STRING_BUILDER_ALLOW_UNSIGNED_NEGATE(x) \
( \
__pragma(warning(push)) \
__pragma(warning(disable:4146)) \
(x) \
__pragma(warning(pop)) \
)
#else
#define STRING_BUILDER_ALLOW_UNSIGNED_NEGATE(x) (x)
#endif
// Formats an integer as decimal without leading zeros.
template <typename C, typename I>
ValueString<C, sizeof(I) * 3 + 1 + 1> gdecOfInt(const I value) {
typedef typename std::make_unsigned<I>::type U;
auto unsValue = static_cast<U>(value);
const bool isNegative = (value < 0);
if (isNegative) {
unsValue = STRING_BUILDER_ALLOW_UNSIGNED_NEGATE(-unsValue);
}
decltype(gdecOfInt<C, I>(value)) out;
auto &arr = out.m_array;
C *const endp = arr.data() + arr.size();
C *outp = endp;
*(--outp) = '\0';
STRING_BUILDER_CHECK(outp >= arr.data());
do {
const int digit = unsValue % 10;
unsValue /= 10;
*(--outp) = '0' + digit;
STRING_BUILDER_CHECK(outp >= arr.data());
} while (unsValue != 0);
if (isNegative) {
*(--outp) = '-';
STRING_BUILDER_CHECK(outp >= arr.data());
}
out.m_offset = outp - arr.data();
out.m_size = endp - outp - 1;
return out;
}
template <typename I> decltype(gdecOfInt<char, I>(0)) decOfInt(I i) {
return gdecOfInt<char>(i);
}
template <typename I> decltype(gdecOfInt<wchar_t, I>(0)) wdecOfInt(I i) {
return gdecOfInt<wchar_t>(i);
}
// Formats an integer as hexadecimal, with or without leading zeros.
template <typename C, bool leadingZeros=false, typename I>
ValueString<C, sizeof(I) * 2 + 1> ghexOfInt(const I value) {
typedef typename std::make_unsigned<I>::type U;
const auto unsValue = static_cast<U>(value);
static const C hex[16] = {'0','1','2','3','4','5','6','7',
'8','9','a','b','c','d','e','f'};
decltype(ghexOfInt<C, leadingZeros, I>(value)) out;
auto &arr = out.m_array;
C *outp = arr.data();
int inIndex = 0;
int shift = sizeof(I) * 8 - 4;
const int len = sizeof(I) * 2;
if (!leadingZeros) {
for (; inIndex < len - 1; ++inIndex, shift -= 4) {
STRING_BUILDER_CHECK(shift >= 0 && shift < sizeof(unsValue) * 8);
const int digit = (unsValue >> shift) & 0xF;
if (digit != 0) {
break;
}
}
}
for (; inIndex < len; ++inIndex, shift -= 4) {
const int digit = (unsValue >> shift) & 0xF;
*(outp++) = hex[digit];
STRING_BUILDER_CHECK(outp <= arr.data() + arr.size());
}
*(outp++) = '\0';
STRING_BUILDER_CHECK(outp <= arr.data() + arr.size());
out.m_offset = 0;
out.m_size = outp - arr.data() - 1;
return out;
}
template <bool leadingZeros=false, typename I>
decltype(ghexOfInt<char, leadingZeros, I>(0)) hexOfInt(I i) {
return ghexOfInt<char, leadingZeros, I>(i);
}
template <bool leadingZeros=false, typename I>
decltype(ghexOfInt<wchar_t, leadingZeros, I>(0)) whexOfInt(I i) {
return ghexOfInt<wchar_t, leadingZeros, I>(i);
}
template <typename C>
class GStringBuilder {
public:
typedef std::basic_string<C> StringType;
GStringBuilder() {}
GStringBuilder(size_t capacity) {
m_out.reserve(capacity);
}
GStringBuilder &operator<<(C ch) { m_out.push_back(ch); return *this; }
GStringBuilder &operator<<(const C *str) { m_out.append(str); return *this; }
GStringBuilder &operator<<(const StringType &str) { m_out.append(str); return *this; }
template <size_t sz>
GStringBuilder &operator<<(const ValueString<C, sz> &str) {
m_out.append(str.data(), str.size());
return *this;
}
private:
// Forbid output of char/wchar_t for GStringBuilder if the type doesn't
// exactly match the builder element type. The code still allows
// signed char and unsigned char, but I'm a little worried about what
// happens if a user tries to output int8_t or uint8_t.
template <typename P>
typename std::enable_if<
(std::is_same<P, char>::value || std::is_same<P, wchar_t>::value) &&
!std::is_same<C, P>::value, GStringBuilder&>::type
operator<<(P ch) {
ASSERT(false && "Method was not supposed to be reachable.");
return *this;
}
public:
GStringBuilder &operator<<(short i) { return *this << gdecOfInt<C>(i); }
GStringBuilder &operator<<(unsigned short i) { return *this << gdecOfInt<C>(i); }
GStringBuilder &operator<<(int i) { return *this << gdecOfInt<C>(i); }
GStringBuilder &operator<<(unsigned int i) { return *this << gdecOfInt<C>(i); }
GStringBuilder &operator<<(long i) { return *this << gdecOfInt<C>(i); }
GStringBuilder &operator<<(unsigned long i) { return *this << gdecOfInt<C>(i); }
GStringBuilder &operator<<(long long i) { return *this << gdecOfInt<C>(i); }
GStringBuilder &operator<<(unsigned long long i) { return *this << gdecOfInt<C>(i); }
GStringBuilder &operator<<(const void *p) {
m_out.push_back(static_cast<C>('0'));
m_out.push_back(static_cast<C>('x'));
*this << ghexOfInt<C>(reinterpret_cast<uintptr_t>(p));
return *this;
}
StringType str() { return m_out; }
StringType str_moved() { return std::move(m_out); }
const C *c_str() const { return m_out.c_str(); }
private:
StringType m_out;
};
typedef GStringBuilder<char> StringBuilder;
typedef GStringBuilder<wchar_t> WStringBuilder;
#endif // WINPTY_STRING_BUILDER_H
|