File size: 9,546 Bytes
a317604 d2f646e 331719a 5931924 a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e a317604 d2f646e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# coding=utf-8
# Copyright 2025 Arsh Team
# MIT License
import torch
import torch.nn as nn
from transformers import (
PreTrainedModel,
GenerationMixin,
Cache,
DynamicCache,
StaticCache,
FlashAttentionKwargs,
ArshConfig
)
from typing import Optional, Tuple, Union, List
class ArshRMSNorm(nn.Module):
"""
RMS Normalization layer customized for Arsh architecture
Args:
hidden_size (int): Dimension of hidden states
eps (float): Epsilon value for numerical stability
Example:
>>> norm = ArshRMSNorm(768)
>>> x = torch.randn(1, 10, 768)
>>> output = norm(x)
"""
def __init__(self, hidden_size: int, eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class ArshRotaryEmbedding(nn.Module):
"""
Rotary Position Embedding implementation for Arsh model
Args:
config (ArshConfig): Model configuration
Attributes:
max_seq_len_cached (int): Maximum cached sequence length
attention_scaling (float): Scaling factor for attention
Example:
>>> config = ArshConfig()
>>> rotary_emb = ArshRotaryEmbedding(config)
"""
def __init__(self, config: ArshConfig):
super().__init__()
self.config = config
self.max_seq_len_cached = config.max_position_embeddings
self.rope_type = config.rope_scaling.get("type", "default")
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(config)
self.register_buffer("inv_freq", inv_freq, persistent=False)
def _update_frequency(self, position_ids: torch.Tensor):
"""Dynamically update frequency based on input sequence length"""
seq_len = position_ids.max() + 1
if seq_len > self.max_seq_len_cached:
inv_freq, self.attention_scaling = self.rope_init_fn(
self.config, seq_len=seq_len
)
self.register_buffer("inv_freq", inv_freq)
self.max_seq_len_cached = seq_len
def forward(self, x: torch.Tensor, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if "dynamic" in self.rope_type:
self._update_frequency(position_ids)
# Compute cosine and sine embeddings
inv_freq_expanded = self.inv_freq[None, :, None]
position_ids_expanded = position_ids[:, None, :].float()
with torch.autocast(device_type=x.device.type, enabled=False):
freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos * self.attention_scaling, sin * self.attention_scaling
class ArshMLP(nn.Module):
"""
Gated MLP Block for Arsh model
Args:
config (ArshConfig): Model configuration
Example:
>>> config = ArshConfig()
>>> mlp = ArshMLP(config)
>>> x = torch.randn(1, 10, 768)
>>> output = mlp(x)
"""
def __init__(self, config: ArshConfig):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class ArshAttention(nn.Module):
"""
Multi-head Attention layer with RoPE support
Args:
config (ArshConfig): Model configuration
layer_idx (int): Layer index
Example:
>>> config = ArshConfig()
>>> attn = ArshAttention(config, layer_idx=0)
"""
def __init__(self, config: ArshConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim)
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size)
self.rotary_emb = ArshRotaryEmbedding(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, seq_len, _ = hidden_states.shape
# Project inputs
q = self.q_proj(hidden_states).view(batch_size, seq_len, self.num_heads, self.head_dim)
k = self.k_proj(hidden_states).view(batch_size, seq_len, self.num_heads, self.head_dim)
v = self.v_proj(hidden_states).view(batch_size, seq_len, self.num_heads, self.head_dim)
# Apply rotary embeddings
cos, sin = self.rotary_emb(hidden_states, position_ids)
q, k = apply_rotary_pos_emb(q, k, cos, sin)
# Attention computation
attn_output, attn_weights = scaled_dot_product_attention(
q, k, v, attention_mask=attention_mask
)
# Output projection
output = self.o_proj(attn_output.view(batch_size, seq_len, -1))
return output, attn_weights
class ArshDecoderLayer(nn.Module):
"""
Transformer Decoder Layer
Args:
config (ArshConfig): Model configuration
layer_idx (int): Layer index
Example:
>>> config = ArshConfig()
>>> layer = ArshDecoderLayer(config, layer_idx=0)
"""
def __init__(self, config: ArshConfig, layer_idx: int):
super().__init__()
self.self_attn = ArshAttention(config, layer_idx)
self.mlp = ArshMLP(config)
self.input_norm = ArshRMSNorm(config.hidden_size)
self.post_attn_norm = ArshRMSNorm(config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# Self-attention block
residual = hidden_states
hidden_states = self.input_norm(hidden_states)
attn_output, _ = self.self_attn(hidden_states, attention_mask, position_ids)
hidden_states = residual + attn_output
# MLP block
residual = hidden_states
hidden_states = self.post_attn_norm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class ArshModel(PreTrainedModel):
"""
Main Arsh model architecture
Args:
config (ArshConfig): Model configuration
Example:
>>> config = ArshConfig()
>>> model = ArshModel(config)
"""
def __init__(self, config: ArshConfig):
super().__init__(config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList(
[ArshDecoderLayer(config, i) for i in range(config.num_hidden_layers)]
)
self.norm = ArshRMSNorm(config.hidden_size)
self.post_init()
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
for layer in self.layers:
hidden_states = layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids
)
return self.norm(hidden_states)
class ArshForCausalLM(ArshModel, GenerationMixin):
"""
Arsh model for causal language modeling
Args:
config (ArshConfig): Model configuration
Example:
>>> config = ArshConfig()
>>> model = ArshForCausalLM(config)
>>> inputs = {"input_ids": torch.randint(0, 100, (1, 10))}
>>> outputs = model(**inputs)
"""
def __init__(self, config: ArshConfig):
super().__init__(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
) -> dict:
hidden_states = super().forward(input_ids, attention_mask)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
return {"loss": loss, "logits": logits} |