{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7803e835bb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7803e835bba0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7803e835bc40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7803e835bce0>", "_build": "<function ActorCriticPolicy._build at 0x7803e835bd80>", "forward": "<function ActorCriticPolicy.forward at 0x7803e835be20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7803e835bec0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7803e835bf60>", "_predict": "<function ActorCriticPolicy._predict at 0x7803e8360040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7803e83600e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7803e8360180>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7803e8360220>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7803e8708e80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739375296286887749, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAKBr2P5g66i1Ehs9q0aa5y3qS6OGnPMwAAgD8AAIA/439gvriRuDyK2d26dolqObZHTL5cKBo6AACAPwAAgD/Nvrg9YbfJO2QqGz6Rmc+9xg8ePXo5hLsAAAAAAAAAANp/ID7c7mC81hQXPBZTn7qqI8C9P4CBuwAAgD8AAIA//TR1vkUjIj6Vkva9MD6mvrRIgL1qQIi8AAAAAAAAAAAz4+S78Km2P/PMMb7Z2g4+WJ5DPONwMT0AAAAAAAAAAJvw6b5tvWs+jpuxvXlfx74jWeW9nuXBPAAAAAAAAAAAsi0Zv21rAz7yroM9I37DvYgepL3oeeE8AAAAAAAAAABT8Du+9hI/vLIXhDt6QJk5+0ivPbvueroAAIA/AACAPxAcnD5RIg0/QZeJvZotub66Uoc9jm2FvQAAAAAAAAAAgLBYPR7quz62RBU9nL7VvuyFaT2DHoW8AAAAAAAAAADGF4E+/QVsP6OG6T5gvuu+zHFfPsI7J70AAAAAAAAAABMMK74DZiy8RS7out62E7kPFJM9RUn0OQAAgD8AAIA/Y7nMPtSKTz7yhmm+UACXvqJY4Dw1MxU9AAAAAAAAAABb88y+hHeqvXDa7Lyw6eq7M2qoPpqhBjwAAIA/AACAP5q+LT72Hni8pfg3u1rSezm+ud+9y1R0OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAFP0dzXBiMAWyUS8SMAXSUR0Cc9a0kWykcdX2UKGgGR0BvOg00m+j/aAdL1mgIR0Cc9psXSBsidX2UKGgGR0BsyjHXEqDsaAdL4WgIR0Cc9zO7xusLdX2UKGgGR0Bu+A2ZRbbDaAdLyWgIR0Cc93BMBZIQdX2UKGgGR0Bxge09hZyNaAdL32gIR0Cc976iCaqkdX2UKGgGR0Bo+MWKuSwGaAdL0WgIR0Cc+BWhRIjGdX2UKGgGR0BvkMqMFUyYaAdNhQNoCEdAnPhE1Q66rnV9lChoBkdAYZZn9Nvfj2gHTegDaAhHQJz4yEZiuuB1fZQoaAZHQGqTf7BO58VoB00uAWgIR0Cc+Rih37k5dX2UKGgGR0Bue/NeMQ2/aAdL2mgIR0Cc+ZCLdepodX2UKGgGR0BweBuFYdQwaAdL0mgIR0Cc+ck690zTdX2UKGgGR0BoP5WV/tpmaAdNGQFoCEdAnPnj2rXDnHV9lChoBkdAbJEBjnV5KWgHS85oCEdAnPyuQyRB/3V9lChoBkdARIetnwob42gHS9toCEdAnP2q6STyKHV9lChoBkdAbgVUVi4J/2gHS91oCEdAnP33D3ueBnV9lChoBkdAbaH4s3AEdWgHTRoBaAhHQJz+PrE9+w11fZQoaAZHQHFc/2K2rn1oB0v6aAhHQJz/jskY4yZ1fZQoaAZHQGp2XMyJsO5oB0vwaAhHQJ0APfDUExJ1fZQoaAZHQG/AZw4sEq5oB0vfaAhHQJ0ARpqREF51fZQoaAZHQG/0SgwoLG9oB0v8aAhHQJ0AUDjin511fZQoaAZHQG9P5eAuqWFoB0vmaAhHQJ0A3RJEpiJ1fZQoaAZHQGxzjTrmhdtoB0v8aAhHQJ0BcbdadMF1fZQoaAZHQHAPBwl0HQhoB0vVaAhHQJ0DlNSIgvF1fZQoaAZHQHEKEZiuuA9oB0vRaAhHQJ0Ecg3cYZV1fZQoaAZHQG+0V+y7f51oB0u+aAhHQJ0GndYW+Gp1fZQoaAZHQGxN1cdHUc5oB0vXaAhHQJ0GxZha1Tl1fZQoaAZHQHGZpdrwe/5oB00AAWgIR0CdBs+gUUO/dX2UKGgGR0BuW8WTHKfWaAdL0GgIR0CdB0IFeOXFdX2UKGgGR0BtR5kTYdyUaAdL4WgIR0CdCJxJ/XoUdX2UKGgGR0Bt2g4ZMtbtaAdL4mgIR0CdCVrmyPdVdX2UKGgGR0BvkPf4yoGZaAdLu2gIR0CdCmNUwSJ1dX2UKGgGR0BxUK9XcQAdaAdNIwFoCEdAnQpuTq0MPXV9lChoBkdAbZ/QIldC3WgHTVQCaAhHQJ0LT/n4fwJ1fZQoaAZHQEPnlVcUuctoB0u8aAhHQJ0Lb1+RYA91fZQoaAZHQGHYaWw/xDtoB03oA2gIR0CdDULi++M7dX2UKGgGR0BviYKIBRyfaAdL12gIR0CdDtG8mKIjdX2UKGgGR0BrnGznied1aAdL+WgIR0CdD/XMhX8wdX2UKGgGR0BmM8iB5HEuaAdN6ANoCEdAnRCJcC5mRXV9lChoBkdAb+tVH4Glh2gHS/loCEdAnRIhUipvP3V9lChoBkdAcC/hR64Ue2gHS+1oCEdAnROKSPluFnV9lChoBkdAaHfA/s3Q2WgHS/hoCEdAnRTukLx7RnV9lChoBkdAcQ3M9r4332gHTSsBaAhHQJ0U7TQVsUJ1fZQoaAZHQGGAEbo8p1BoB03oA2gIR0CdFPpRoAXEdX2UKGgGR0BiuA7HQyAQaAdN6ANoCEdAnRUPLTx5LXV9lChoBkdAbfgkJKJ2uGgHTRoBaAhHQJ0VUbgjyFx1fZQoaAZHQHCncjNY8uBoB0vhaAhHQJ0WAm3OObR1fZQoaAZHQGvb/0EovzxoB0vRaAhHQJ0Ww2cawUx1fZQoaAZHQG/ZBl+Vkc1oB00zAWgIR0CdFvT3qRlpdX2UKGgGR0BwOkVLzwtraAdL1GgIR0CdF8PXCj1xdX2UKGgGR0AuzGFSKm8/aAdLxmgIR0CdF82jwhGIdX2UKGgGR0BucqMDOkckaAdL4WgIR0CdGfLqUu+RdX2UKGgGR0BlRLOu7pV0aAdN6ANoCEdAnRq8jJMg2nV9lChoBkdAaNnanJkoW2gHTSgCaAhHQJ0bTQqqfe11fZQoaAZHQHGcUhaC+URoB0vkaAhHQJ0dWttALRd1fZQoaAZHQG9NJjtoi9toB0vNaAhHQJ0drCyhSLt1fZQoaAZHQHDSOhsZYPpoB0vvaAhHQJ0duK1og3d1fZQoaAZHQHDKk/8l5W1oB0vxaAhHQJ0d0WHk92Z1fZQoaAZHQHB81yFPBSFoB00pAWgIR0CdHr4O+ZgHdX2UKGgGR0BrzfQla8pTaAdNjwJoCEdAnSBuyNXHR3V9lChoBkdAbQwvV3EAHWgHS/doCEdAnSDfxH5JsnV9lChoBke/51fXwsoUjGgHS5hoCEdAnSGAXqJMx3V9lChoBkdAbcGx+KCQLmgHTQIBaAhHQJ0ijd56dDp1fZQoaAZHwAxaOYIBzWBoB0t+aAhHQJ0jH2GqPwN1fZQoaAZHQGDS+vIOpbVoB03oA2gIR0CdI0DGLk0adX2UKGgGR0BuJRAB1cMWaAdNTAFoCEdAnSPZqmCROnV9lChoBkdAby5/7SApa2gHTY8BaAhHQJ0kLLns9jh1fZQoaAZHQHBtpHuqm0poB0vHaAhHQJ0k9ymygPF1fZQoaAZHQHCXcW43FUBoB0v4aAhHQJ0lAfaHsTp1fZQoaAZHQGUg1yNn5BVoB01kAWgIR0CdJWVafSQYdX2UKGgGR0Bwtzc8DB/JaAdL1mgIR0CdJZ1AJLM+dX2UKGgGR0Bu/Xk7wKBvaAdL2mgIR0CdJa0EovzwdX2UKGgGR0BzNmOIZZSvaAdL0GgIR0CdJfqu8scydX2UKGgGR0BvxjXz19ORaAdL/WgIR0CdKEvAoG6gdX2UKGgGR0BwtySfUWl/aAdL5GgIR0CdKQSIP9UCdX2UKGgGR0BAoGmtQsPKaAdLl2gIR0CdKhdJJ5E/dX2UKGgGR0BrtWnl4keIaAdNKwFoCEdAnSo3AZbY9XV9lChoBkfAH1gXdj5KvmgHS7loCEdAnSsCq2jO9nV9lChoBkdAcFB1q33HrGgHS9loCEdAnSuWRigCfnV9lChoBkdAbpRgnc+JQGgHS9loCEdAnSumh24d63V9lChoBkdASdqqp97Wu2gHS9FoCEdAnSzEQXhwVHV9lChoBkdAbkhVo6CDmWgHTUUBaAhHQJ0ufphWo3t1fZQoaAZHQHC/4HX2/SJoB0vJaAhHQJ0vlCE6DGt1fZQoaAZHQHPdnfhuO0doB002AWgIR0CdMBfXwsoVdX2UKGgGR0BxU3uTibUgaAdLq2gIR0CdMI5RCQcQdX2UKGgGR0BuSLcfvF3qaAdN0gFoCEdAnTDpd4Vym3V9lChoBkdAbyWNR3u/lGgHS89oCEdAnTG4M4LkS3V9lChoBkdAcDKglnh86WgHS9FoCEdAnTK+9vjwQXV9lChoBkdAaPU/7iyY5WgHTdABaAhHQJ0zPTZxrBV1fZQoaAZHQG/Q4h2W6bxoB00lAWgIR0CdM78CPp6hdX2UKGgGR0Bv+edCmdiEaAdL/GgIR0CdNMfXPJJYdX2UKGgGR0BxKqg+QlruaAdL7mgIR0CdNV9kjHGTdX2UKGgGR0BteS+QEIPcaAdL32gIR0CdNmF+NLlFdX2UKGgGR0Bwu7Vc2R7raAdNNgFoCEdAnTbFwLmZE3V9lChoBkdAbia//vOQhmgHS9VoCEdAnTcJFgDzRXV9lChoBkdAbpYGsV+I/WgHS89oCEdAnTgKAJ9iMHV9lChoBkdAR15G4I8hcWgHS71oCEdAnTg2EwnIAHV9lChoBkdAYD/nctXgcmgHTegDaAhHQJ04kJRfnfV1fZQoaAZHQHFspKSPluFoB0vzaAhHQJ048gX/HYJ1fZQoaAZHQHALa6reZXxoB03FAmgIR0CdOs6ySmqHdX2UKGgGR0Bw9dFOO802aAdLxWgIR0CdPBeVcD8tdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |