File size: 4,191 Bytes
f3f904f 4d73755 f3f904f ee3ebb6 4d73755 f3f904f 4d73755 651210f 4d73755 651210f f3f904f 4d73755 f3f904f 4d73755 f3f904f 4d73755 f3f904f 4d73755 f3f904f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
language:
- uk
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-1b-hy
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice uk
args: uk
metrics:
- type: wer
value: 10.406342913776015
name: WER LM
- type: cer
value: 2.0387492208601703
name: CER LM
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: uk
metrics:
- name: Test WER
type: wer
value: 40.57
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: uk
metrics:
- name: Test WER
type: wer
value: 28.95
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/UK/COMPOSED_DATASET/ - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1092
- Wer: 0.1752
- Cer: 0.0323
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 12000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 1.7005 | 1.61 | 500 | 0.4082 | 0.5584 | 0.1164 |
| 1.1555 | 3.22 | 1000 | 0.2020 | 0.2953 | 0.0557 |
| 1.0927 | 4.82 | 1500 | 0.1708 | 0.2584 | 0.0480 |
| 1.0707 | 6.43 | 2000 | 0.1563 | 0.2405 | 0.0450 |
| 1.0728 | 8.04 | 2500 | 0.1620 | 0.2442 | 0.0463 |
| 1.0268 | 9.65 | 3000 | 0.1588 | 0.2378 | 0.0458 |
| 1.0328 | 11.25 | 3500 | 0.1466 | 0.2352 | 0.0442 |
| 1.0249 | 12.86 | 4000 | 0.1552 | 0.2341 | 0.0449 |
| 1.016 | 14.47 | 4500 | 0.1602 | 0.2435 | 0.0473 |
| 1.0164 | 16.08 | 5000 | 0.1491 | 0.2337 | 0.0444 |
| 0.9935 | 17.68 | 5500 | 0.1539 | 0.2373 | 0.0458 |
| 0.9626 | 19.29 | 6000 | 0.1458 | 0.2305 | 0.0434 |
| 0.9505 | 20.9 | 6500 | 0.1368 | 0.2157 | 0.0407 |
| 0.9389 | 22.51 | 7000 | 0.1437 | 0.2231 | 0.0426 |
| 0.9129 | 24.12 | 7500 | 0.1313 | 0.2076 | 0.0394 |
| 0.9118 | 25.72 | 8000 | 0.1292 | 0.2040 | 0.0384 |
| 0.8848 | 27.33 | 8500 | 0.1299 | 0.2028 | 0.0384 |
| 0.8667 | 28.94 | 9000 | 0.1228 | 0.1945 | 0.0367 |
| 0.8641 | 30.55 | 9500 | 0.1223 | 0.1939 | 0.0364 |
| 0.8516 | 32.15 | 10000 | 0.1184 | 0.1876 | 0.0349 |
| 0.8379 | 33.76 | 10500 | 0.1137 | 0.1821 | 0.0338 |
| 0.8235 | 35.37 | 11000 | 0.1127 | 0.1779 | 0.0331 |
| 0.8112 | 36.98 | 11500 | 0.1103 | 0.1766 | 0.0327 |
| 0.8069 | 38.59 | 12000 | 0.1092 | 0.1752 | 0.0323 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
|