trained model 2e+06 steps
Browse files- .gitattributes +1 -0
- LunarLander-v2-ppo.zip +3 -0
- LunarLander-v2-ppo/_stable_baselines3_version +1 -0
- LunarLander-v2-ppo/data +93 -0
- LunarLander-v2-ppo/policy.optimizer.pth +3 -0
- LunarLander-v2-ppo/policy.pth +3 -0
- LunarLander-v2-ppo/pytorch_variables.pth +3 -0
- LunarLander-v2-ppo/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
LunarLander-v2-ppo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5548d964a3767788c568c65534e19718e50c574f8683ce8a19ae1f30f9a554ef
|
3 |
+
size 143576
|
LunarLander-v2-ppo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.4.0
|
LunarLander-v2-ppo/data
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcb39ed560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcb39ed5f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcb39ed680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcb39ed710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbcb39ed7a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbcb39ed830>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcb39ed8c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbcb39ed950>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcb39ed9e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcb39eda70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcb39edb00>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fbcb3a37930>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652480081.6423507,
|
51 |
+
"learning_rate": 0.0004,
|
52 |
+
"tensorboard_log": "runs/3je4dv8l",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz86NuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbo0j0UPYY+piwLvo8KEL+DOtE9K4sIvgAAAAAAAAAAADygvDhxkbvAvwS+LdXIPLz6+TwSAKm9AACAPwAAgD+TAos+2oTmPgQARr5yjBW/cuCIPvYRK74AAAAAAAAAAK29Iz7xCJQ/pu8KP0f2Gr91P44+i42xPgAAAAAAAAAAM8A9va5/kbp9rAi4QVG7tZX6EzsfQyE3AACAPwAAgD+Nko+9jrYIP2fbPL1Auzq/MrEAvmYyKbwAAAAAAAAAAE3vCr2P0k+6qt8gPeeaKjPdoy276LdTMwAAgD8AAIA/5oCAvfn6BT/EFpo9/TVLv7wWtb0QD2g8AAAAAAAAAABmE5q8nw7qu4t6RDyg0Zc8Pmg+vWKIfj0AAIA/AACAP411DL5PL1I+W7pNPoymAr8DSTK+Ku4QPgAAAAAAAAAAZirZOxQUpbrr/Qm+pFmxtmo1y7eWhB42AACAPwAAgD8zWZ29A5l3vIuVTj6LpMS9pxTJvcL31L4AAAAAAACAP62nij4NClI/C5rmPTIATb8vn8A+iottvQAAAAAAAAAApgs2PoaW4D7Aov68fGIcv59fVj4y0QG+AAAAAAAAAACNQYA9nzmbu441LbxgJYk8S6XuvC0haj0AAIA/AACAP013Ez044vW7cuDQvIeuoTs21Wq96ouaPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6lvmdNnXcECUhpRSlIwBbJRLkIwBdJRHQKAcHZMcp9Z1fZQoaAZoCWgPQwita7QcaA90QJSGlFKUaBVLxGgWR0CgHDqAJ9iMdX2UKGgGaAloD0MIrroO1VS5cUCUhpRSlGgVS7NoFkdAoBx1E5Qxe3V9lChoBmgJaA9DCJdvfVgviXBAlIaUUpRoFUuTaBZHQKAchFHavid1fZQoaAZoCWgPQwg6ysFswv1zQJSGlFKUaBVLxmgWR0CgHJcU/OdHdX2UKGgGaAloD0MIa2YtBaQBckCUhpRSlGgVS5doFkdAoByjyH2ys3V9lChoBmgJaA9DCLGjcaifxnJAlIaUUpRoFUvBaBZHQKAcqtOmBOJ1fZQoaAZoCWgPQwiZnNoZptFxQJSGlFKUaBVLuWgWR0CgHMikGiYcdX2UKGgGaAloD0MI7KF9rGBmckCUhpRSlGgVS8poFkdAoBzK/VRUFXV9lChoBmgJaA9DCGN9A5MbnHBAlIaUUpRoFUuXaBZHQKAczNB4Uvh1fZQoaAZoCWgPQwh6jPLMi99zQJSGlFKUaBVL0GgWR0CgHNQdbPhRdX2UKGgGaAloD0MIBac+kHy/cECUhpRSlGgVS5hoFkdAoC5GwJPZZnV9lChoBmgJaA9DCHx+GCE8XXJAlIaUUpRoFUvpaBZHQKAuTQmeDnN1fZQoaAZoCWgPQwid2a7QByxxQJSGlFKUaBVLs2gWR0CgLmaWX1J2dX2UKGgGaAloD0MI7zzxnK2XcECUhpRSlGgVS6doFkdAoC6FIbwSanV9lChoBmgJaA9DCMUe2seKlXNAlIaUUpRoFUvWaBZHQKAuiY0l7dB1fZQoaAZoCWgPQwhkV1pGagVwQJSGlFKUaBVLnGgWR0CgLtODJ2dNdX2UKGgGaAloD0MI6USCqaZickCUhpRSlGgVS4xoFkdAoC8wfSx7iXV9lChoBmgJaA9DCP/pBgp8/HJAlIaUUpRoFUvJaBZHQKAvaznied11fZQoaAZoCWgPQwj5adyb31ByQJSGlFKUaBVLqWgWR0CgL3zF+/g0dX2UKGgGaAloD0MIjfD2IETtcUCUhpRSlGgVS4BoFkdAoC+0YIjW1HV9lChoBmgJaA9DCO1+FeD7kHJAlIaUUpRoFUvPaBZHQKAvwKYRdyF1fZQoaAZoCWgPQwj6Y1qbhhRzQJSGlFKUaBVL0GgWR0CgL9Rm03OwdX2UKGgGaAloD0MIhxiveRVvdECUhpRSlGgVS7xoFkdAoC/kupS75HV9lChoBmgJaA9DCFTiOsYVmnNAlIaUUpRoFUvRaBZHQKAv6j7ALzB1fZQoaAZoCWgPQwhM32sIjhJyQJSGlFKUaBVLwWgWR0CgL/XO4XoDdX2UKGgGaAloD0MIzH9Ivz2AckCUhpRSlGgVS9FoFkdAoDAcIsyzonV9lChoBmgJaA9DCMueBDbnokVAlIaUUpRoFUuQaBZHQKAwK5PuXu51fZQoaAZoCWgPQwjG3LWE/At0QJSGlFKUaBVL4GgWR0CgMFMEq2BrdX2UKGgGaAloD0MIODC5UaQKckCUhpRSlGgVS8doFkdAoDB+UB4lhXV9lChoBmgJaA9DCE1LrIxGJ3FAlIaUUpRoFUu+aBZHQKAwgUaAFxJ1fZQoaAZoCWgPQwjJzAUuzwRxQJSGlFKUaBVLtGgWR0CgMNdZaFEidX2UKGgGaAloD0MIXAUx0LUBc0CUhpRSlGgVS+VoFkdAoDEXM0P6K3V9lChoBmgJaA9DCKSMuAC0KHJAlIaUUpRoFUuEaBZHQKAxVPOY6XB1fZQoaAZoCWgPQwix3xPrVGVxQJSGlFKUaBVLq2gWR0CgMVMDnvDxdX2UKGgGaAloD0MIpfljWhtdckCUhpRSlGgVS4hoFkdAoDFllI3BHnV9lChoBmgJaA9DCBE3p5KBZHNAlIaUUpRoFUvJaBZHQKAxbkiD/VB1fZQoaAZoCWgPQwiaCYZzjVxxQJSGlFKUaBVLoWgWR0CgMXu4gA6udX2UKGgGaAloD0MICK2HLxNec0CUhpRSlGgVS6VoFkdAoDGRa/yoXXV9lChoBmgJaA9DCJkSSfQyIXNAlIaUUpRoFUvNaBZHQKAxt5LRKHx1fZQoaAZoCWgPQwjmH32TJiRxQJSGlFKUaBVLuWgWR0CgMcxPwd8zdX2UKGgGaAloD0MItqLNcW7FcECUhpRSlGgVS6JoFkdAoDHeSbH6uXV9lChoBmgJaA9DCNLijGFOuHFAlIaUUpRoFUuCaBZHQKAx3RLK3d91fZQoaAZoCWgPQwidS3FV2elwQJSGlFKUaBVLtWgWR0CgMgNPP9k0dX2UKGgGaAloD0MIPlsHB3vbcECUhpRSlGgVS55oFkdAoDH7BCUornV9lChoBmgJaA9DCIo+H2XEsnNAlIaUUpRoFUveaBZHQKAyR9n9Nvh1fZQoaAZoCWgPQwhtcCL6NTZ0QJSGlFKUaBVLumgWR0CgMnb5Ec81dX2UKGgGaAloD0MITwgddEn1cECUhpRSlGgVS4poFkdAoDK/K8tf5XV9lChoBmgJaA9DCLHc0mrIFHNAlIaUUpRoFUu6aBZHQKAyzI5HVgB1fZQoaAZoCWgPQwiXcOgtnrpxQJSGlFKUaBVLiWgWR0CgMvvOpsGgdX2UKGgGaAloD0MIrDsW26S9cUCUhpRSlGgVS7ZoFkdAoDM/VEuxr3V9lChoBmgJaA9DCK/QB8tYFXFAlIaUUpRoFUuyaBZHQKAzR1Ng0CR1fZQoaAZoCWgPQwjV7IFWoF5xQJSGlFKUaBVLsWgWR0CgM11LBbfQdX2UKGgGaAloD0MI18BWCRZkcECUhpRSlGgVS5JoFkdAoDNnaJyhjHV9lChoBmgJaA9DCBE0ZhI1PXNAlIaUUpRoFUu9aBZHQKAzc8PFvQ51fZQoaAZoCWgPQwizYOKP4ptxQJSGlFKUaBVLlGgWR0CgM6dalk6LdX2UKGgGaAloD0MIJbIPsqzGcUCUhpRSlGgVS7hoFkdAoDO3BJqZdHV9lChoBmgJaA9DCPzjvWplunFAlIaUUpRoFUu4aBZHQKAz5Xbuc+d1fZQoaAZoCWgPQwikHMwmQBpzQJSGlFKUaBVLyWgWR0CgNBmplz2fdX2UKGgGaAloD0MIUYiAQ6hdc0CUhpRSlGgVS8doFkdAoDQ0PH1e0HV9lChoBmgJaA9DCLR3RlvVCXNAlIaUUpRoFUuwaBZHQKA0R91loUV1fZQoaAZoCWgPQwjdQexMocxxQJSGlFKUaBVLxWgWR0CgNL0ornTzdX2UKGgGaAloD0MIgV1NnjIbcUCUhpRSlGgVS7xoFkdAoDTywt8NQXV9lChoBmgJaA9DCAtgysDBYnFAlIaUUpRoFUuSaBZHQKA1ABq9Gqh1fZQoaAZoCWgPQwg3iUFgJTZzQJSGlFKUaBVLxWgWR0CgNRpwS8J2dX2UKGgGaAloD0MI2J/E5048cUCUhpRSlGgVS75oFkdAoDU55Z8rqnV9lChoBmgJaA9DCNwr81bdMG9AlIaUUpRoFUuhaBZHQKA1Tmwqy4Z1fZQoaAZoCWgPQwiSI52B0W5xQJSGlFKUaBVLsWgWR0CgNVpjDsMRdX2UKGgGaAloD0MIb/YHym15cUCUhpRSlGgVS6hoFkdAoDWv3BYV7HV9lChoBmgJaA9DCJYIVP9gBXNAlIaUUpRoFUvEaBZHQKA1zQu27Wd1fZQoaAZoCWgPQwikqDP3UHdzQJSGlFKUaBVL4WgWR0CgNhHYHxBmdX2UKGgGaAloD0MIiEz5EBTQckCUhpRSlGgVS8hoFkdAoDYoFNcnmnV9lChoBmgJaA9DCItQbAUN5HFAlIaUUpRoFUu9aBZHQKA2N4zJp351fZQoaAZoCWgPQwiLG7eYnyRvQJSGlFKUaBVLpWgWR0CgNjy3Td+HdX2UKGgGaAloD0MI1hwgmKNWcECUhpRSlGgVS6toFkdAoDZd2eQMhHV9lChoBmgJaA9DCHRBfcscn3JAlIaUUpRoFUvIaBZHQKA2iP+XJHR1fZQoaAZoCWgPQwiiYweVOLxxQJSGlFKUaBVLiGgWR0CgNruTzND/dX2UKGgGaAloD0MIBCDu6hUOc0CUhpRSlGgVS6VoFkdAoDa7876pHnV9lChoBmgJaA9DCFHAdjCiS3RAlIaUUpRoFU35AWgWR0CgNtOFHrhSdX2UKGgGaAloD0MIVcITen2gckCUhpRSlGgVS5NoFkdAoDcLw2ETQHV9lChoBmgJaA9DCH9LAP5ppHFAlIaUUpRoFUu0aBZHQKA3IsdT5wh1fZQoaAZoCWgPQwhUi4hico5xQJSGlFKUaBVLqGgWR0CgN1B7VrhzdX2UKGgGaAloD0MIRSqMLQSxcUCUhpRSlGgVS7poFkdAoDdn446wMnV9lChoBmgJaA9DCIuLo3KTT3BAlIaUUpRoFUuaaBZHQKA3dXLeQ+51fZQoaAZoCWgPQwil8+FZQjhzQJSGlFKUaBVL4WgWR0CgN5U2UB4mdX2UKGgGaAloD0MIC5bqAh4KcUCUhpRSlGgVS8JoFkdAoDf6Wu5jIHV9lChoBmgJaA9DCA+3Q8PiNm9AlIaUUpRoFUuXaBZHQKA4D4lhPTJ1fZQoaAZoCWgPQwjc9dIUQSFyQJSGlFKUaBVLvmgWR0CgODDyvs7ddX2UKGgGaAloD0MI5wEs8isjckCUhpRSlGgVS7loFkdAoDg5KHwgDHV9lChoBmgJaA9DCPqAQGeS0HJAlIaUUpRoFUuxaBZHQKA4MiTMaCN1fZQoaAZoCWgPQwi5/8h0qPRyQJSGlFKUaBVLlWgWR0CgOGSiEg4fdX2UKGgGaAloD0MI88zLYffDckCUhpRSlGgVS8toFkdAoDh+8dxQznV9lChoBmgJaA9DCIyDS8fc53JAlIaUUpRoFUuhaBZHQKA41CqIacZ1fZQoaAZoCWgPQwicTUcAd9tyQJSGlFKUaBVL0WgWR0CgON1x82JjdX2UKGgGaAloD0MIscHCSRojckCUhpRSlGgVS7loFkdAoDjjnkkrw3V9lChoBmgJaA9DCMWQnEzcZHFAlIaUUpRoFUuTaBZHQKA49420iQl1fZQoaAZoCWgPQwgMy59vCwFyQJSGlFKUaBVLkWgWR0CgOQqB3A2ydX2UKGgGaAloD0MIaXHGMKdfcUCUhpRSlGgVS6loFkdAoDkIs3AEdXV9lChoBmgJaA9DCCxEh8BRhXJAlIaUUpRoFUuHaBZHQKA5HAu7HyV1fZQoaAZoCWgPQwiJDKt4I95zQJSGlFKUaBVL92gWR0CgOXn003wTdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1230,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"target_kl": null
|
93 |
+
}
|
LunarLander-v2-ppo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7026792a2139e0ecc2bf11102d4fe445b9ecf7d6b65f97e01e993667889f7a1f
|
3 |
+
size 84637
|
LunarLander-v2-ppo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7fbb0d1d86eecb28ef14929c2cc51f9af209fd00b905a9e3db00205307c1670
|
3 |
+
size 43073
|
LunarLander-v2-ppo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander-v2-ppo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.4.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.17.3
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 269.09 +/- 65.43
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcb39ed560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcb39ed5f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcb39ed680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcb39ed710>", "_build": "<function ActorCriticPolicy._build at 0x7fbcb39ed7a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbcb39ed830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcb39ed8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbcb39ed950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcb39ed9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcb39eda70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcb39edb00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbcb3a37930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652480081.6423507, "learning_rate": 0.0004, "tensorboard_log": "runs/3je4dv8l", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz86NuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbo0j0UPYY+piwLvo8KEL+DOtE9K4sIvgAAAAAAAAAAADygvDhxkbvAvwS+LdXIPLz6+TwSAKm9AACAPwAAgD+TAos+2oTmPgQARr5yjBW/cuCIPvYRK74AAAAAAAAAAK29Iz7xCJQ/pu8KP0f2Gr91P44+i42xPgAAAAAAAAAAM8A9va5/kbp9rAi4QVG7tZX6EzsfQyE3AACAPwAAgD+Nko+9jrYIP2fbPL1Auzq/MrEAvmYyKbwAAAAAAAAAAE3vCr2P0k+6qt8gPeeaKjPdoy276LdTMwAAgD8AAIA/5oCAvfn6BT/EFpo9/TVLv7wWtb0QD2g8AAAAAAAAAABmE5q8nw7qu4t6RDyg0Zc8Pmg+vWKIfj0AAIA/AACAP411DL5PL1I+W7pNPoymAr8DSTK+Ku4QPgAAAAAAAAAAZirZOxQUpbrr/Qm+pFmxtmo1y7eWhB42AACAPwAAgD8zWZ29A5l3vIuVTj6LpMS9pxTJvcL31L4AAAAAAACAP62nij4NClI/C5rmPTIATb8vn8A+iottvQAAAAAAAAAApgs2PoaW4D7Aov68fGIcv59fVj4y0QG+AAAAAAAAAACNQYA9nzmbu441LbxgJYk8S6XuvC0haj0AAIA/AACAP013Ez044vW7cuDQvIeuoTs21Wq96ouaPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6lvmdNnXcECUhpRSlIwBbJRLkIwBdJRHQKAcHZMcp9Z1fZQoaAZoCWgPQwita7QcaA90QJSGlFKUaBVLxGgWR0CgHDqAJ9iMdX2UKGgGaAloD0MIrroO1VS5cUCUhpRSlGgVS7NoFkdAoBx1E5Qxe3V9lChoBmgJaA9DCJdvfVgviXBAlIaUUpRoFUuTaBZHQKAchFHavid1fZQoaAZoCWgPQwg6ysFswv1zQJSGlFKUaBVLxmgWR0CgHJcU/OdHdX2UKGgGaAloD0MIa2YtBaQBckCUhpRSlGgVS5doFkdAoByjyH2ys3V9lChoBmgJaA9DCLGjcaifxnJAlIaUUpRoFUvBaBZHQKAcqtOmBOJ1fZQoaAZoCWgPQwiZnNoZptFxQJSGlFKUaBVLuWgWR0CgHMikGiYcdX2UKGgGaAloD0MI7KF9rGBmckCUhpRSlGgVS8poFkdAoBzK/VRUFXV9lChoBmgJaA9DCGN9A5MbnHBAlIaUUpRoFUuXaBZHQKAczNB4Uvh1fZQoaAZoCWgPQwh6jPLMi99zQJSGlFKUaBVL0GgWR0CgHNQdbPhRdX2UKGgGaAloD0MIBac+kHy/cECUhpRSlGgVS5hoFkdAoC5GwJPZZnV9lChoBmgJaA9DCHx+GCE8XXJAlIaUUpRoFUvpaBZHQKAuTQmeDnN1fZQoaAZoCWgPQwid2a7QByxxQJSGlFKUaBVLs2gWR0CgLmaWX1J2dX2UKGgGaAloD0MI7zzxnK2XcECUhpRSlGgVS6doFkdAoC6FIbwSanV9lChoBmgJaA9DCMUe2seKlXNAlIaUUpRoFUvWaBZHQKAuiY0l7dB1fZQoaAZoCWgPQwhkV1pGagVwQJSGlFKUaBVLnGgWR0CgLtODJ2dNdX2UKGgGaAloD0MI6USCqaZickCUhpRSlGgVS4xoFkdAoC8wfSx7iXV9lChoBmgJaA9DCP/pBgp8/HJAlIaUUpRoFUvJaBZHQKAvaznied11fZQoaAZoCWgPQwj5adyb31ByQJSGlFKUaBVLqWgWR0CgL3zF+/g0dX2UKGgGaAloD0MIjfD2IETtcUCUhpRSlGgVS4BoFkdAoC+0YIjW1HV9lChoBmgJaA9DCO1+FeD7kHJAlIaUUpRoFUvPaBZHQKAvwKYRdyF1fZQoaAZoCWgPQwj6Y1qbhhRzQJSGlFKUaBVL0GgWR0CgL9Rm03OwdX2UKGgGaAloD0MIhxiveRVvdECUhpRSlGgVS7xoFkdAoC/kupS75HV9lChoBmgJaA9DCFTiOsYVmnNAlIaUUpRoFUvRaBZHQKAv6j7ALzB1fZQoaAZoCWgPQwhM32sIjhJyQJSGlFKUaBVLwWgWR0CgL/XO4XoDdX2UKGgGaAloD0MIzH9Ivz2AckCUhpRSlGgVS9FoFkdAoDAcIsyzonV9lChoBmgJaA9DCMueBDbnokVAlIaUUpRoFUuQaBZHQKAwK5PuXu51fZQoaAZoCWgPQwjG3LWE/At0QJSGlFKUaBVL4GgWR0CgMFMEq2BrdX2UKGgGaAloD0MIODC5UaQKckCUhpRSlGgVS8doFkdAoDB+UB4lhXV9lChoBmgJaA9DCE1LrIxGJ3FAlIaUUpRoFUu+aBZHQKAwgUaAFxJ1fZQoaAZoCWgPQwjJzAUuzwRxQJSGlFKUaBVLtGgWR0CgMNdZaFEidX2UKGgGaAloD0MIXAUx0LUBc0CUhpRSlGgVS+VoFkdAoDEXM0P6K3V9lChoBmgJaA9DCKSMuAC0KHJAlIaUUpRoFUuEaBZHQKAxVPOY6XB1fZQoaAZoCWgPQwix3xPrVGVxQJSGlFKUaBVLq2gWR0CgMVMDnvDxdX2UKGgGaAloD0MIpfljWhtdckCUhpRSlGgVS4hoFkdAoDFllI3BHnV9lChoBmgJaA9DCBE3p5KBZHNAlIaUUpRoFUvJaBZHQKAxbkiD/VB1fZQoaAZoCWgPQwiaCYZzjVxxQJSGlFKUaBVLoWgWR0CgMXu4gA6udX2UKGgGaAloD0MICK2HLxNec0CUhpRSlGgVS6VoFkdAoDGRa/yoXXV9lChoBmgJaA9DCJkSSfQyIXNAlIaUUpRoFUvNaBZHQKAxt5LRKHx1fZQoaAZoCWgPQwjmH32TJiRxQJSGlFKUaBVLuWgWR0CgMcxPwd8zdX2UKGgGaAloD0MItqLNcW7FcECUhpRSlGgVS6JoFkdAoDHeSbH6uXV9lChoBmgJaA9DCNLijGFOuHFAlIaUUpRoFUuCaBZHQKAx3RLK3d91fZQoaAZoCWgPQwidS3FV2elwQJSGlFKUaBVLtWgWR0CgMgNPP9k0dX2UKGgGaAloD0MIPlsHB3vbcECUhpRSlGgVS55oFkdAoDH7BCUornV9lChoBmgJaA9DCIo+H2XEsnNAlIaUUpRoFUveaBZHQKAyR9n9Nvh1fZQoaAZoCWgPQwhtcCL6NTZ0QJSGlFKUaBVLumgWR0CgMnb5Ec81dX2UKGgGaAloD0MITwgddEn1cECUhpRSlGgVS4poFkdAoDK/K8tf5XV9lChoBmgJaA9DCLHc0mrIFHNAlIaUUpRoFUu6aBZHQKAyzI5HVgB1fZQoaAZoCWgPQwiXcOgtnrpxQJSGlFKUaBVLiWgWR0CgMvvOpsGgdX2UKGgGaAloD0MIrDsW26S9cUCUhpRSlGgVS7ZoFkdAoDM/VEuxr3V9lChoBmgJaA9DCK/QB8tYFXFAlIaUUpRoFUuyaBZHQKAzR1Ng0CR1fZQoaAZoCWgPQwjV7IFWoF5xQJSGlFKUaBVLsWgWR0CgM11LBbfQdX2UKGgGaAloD0MI18BWCRZkcECUhpRSlGgVS5JoFkdAoDNnaJyhjHV9lChoBmgJaA9DCBE0ZhI1PXNAlIaUUpRoFUu9aBZHQKAzc8PFvQ51fZQoaAZoCWgPQwizYOKP4ptxQJSGlFKUaBVLlGgWR0CgM6dalk6LdX2UKGgGaAloD0MIJbIPsqzGcUCUhpRSlGgVS7hoFkdAoDO3BJqZdHV9lChoBmgJaA9DCPzjvWplunFAlIaUUpRoFUu4aBZHQKAz5Xbuc+d1fZQoaAZoCWgPQwikHMwmQBpzQJSGlFKUaBVLyWgWR0CgNBmplz2fdX2UKGgGaAloD0MIUYiAQ6hdc0CUhpRSlGgVS8doFkdAoDQ0PH1e0HV9lChoBmgJaA9DCLR3RlvVCXNAlIaUUpRoFUuwaBZHQKA0R91loUV1fZQoaAZoCWgPQwjdQexMocxxQJSGlFKUaBVLxWgWR0CgNL0ornTzdX2UKGgGaAloD0MIgV1NnjIbcUCUhpRSlGgVS7xoFkdAoDTywt8NQXV9lChoBmgJaA9DCAtgysDBYnFAlIaUUpRoFUuSaBZHQKA1ABq9Gqh1fZQoaAZoCWgPQwg3iUFgJTZzQJSGlFKUaBVLxWgWR0CgNRpwS8J2dX2UKGgGaAloD0MI2J/E5048cUCUhpRSlGgVS75oFkdAoDU55Z8rqnV9lChoBmgJaA9DCNwr81bdMG9AlIaUUpRoFUuhaBZHQKA1Tmwqy4Z1fZQoaAZoCWgPQwiSI52B0W5xQJSGlFKUaBVLsWgWR0CgNVpjDsMRdX2UKGgGaAloD0MIb/YHym15cUCUhpRSlGgVS6hoFkdAoDWv3BYV7HV9lChoBmgJaA9DCJYIVP9gBXNAlIaUUpRoFUvEaBZHQKA1zQu27Wd1fZQoaAZoCWgPQwikqDP3UHdzQJSGlFKUaBVL4WgWR0CgNhHYHxBmdX2UKGgGaAloD0MIiEz5EBTQckCUhpRSlGgVS8hoFkdAoDYoFNcnmnV9lChoBmgJaA9DCItQbAUN5HFAlIaUUpRoFUu9aBZHQKA2N4zJp351fZQoaAZoCWgPQwiLG7eYnyRvQJSGlFKUaBVLpWgWR0CgNjy3Td+HdX2UKGgGaAloD0MI1hwgmKNWcECUhpRSlGgVS6toFkdAoDZd2eQMhHV9lChoBmgJaA9DCHRBfcscn3JAlIaUUpRoFUvIaBZHQKA2iP+XJHR1fZQoaAZoCWgPQwiiYweVOLxxQJSGlFKUaBVLiGgWR0CgNruTzND/dX2UKGgGaAloD0MIBCDu6hUOc0CUhpRSlGgVS6VoFkdAoDa7876pHnV9lChoBmgJaA9DCFHAdjCiS3RAlIaUUpRoFU35AWgWR0CgNtOFHrhSdX2UKGgGaAloD0MIVcITen2gckCUhpRSlGgVS5NoFkdAoDcLw2ETQHV9lChoBmgJaA9DCH9LAP5ppHFAlIaUUpRoFUu0aBZHQKA3IsdT5wh1fZQoaAZoCWgPQwhUi4hico5xQJSGlFKUaBVLqGgWR0CgN1B7VrhzdX2UKGgGaAloD0MIRSqMLQSxcUCUhpRSlGgVS7poFkdAoDdn446wMnV9lChoBmgJaA9DCIuLo3KTT3BAlIaUUpRoFUuaaBZHQKA3dXLeQ+51fZQoaAZoCWgPQwil8+FZQjhzQJSGlFKUaBVL4WgWR0CgN5U2UB4mdX2UKGgGaAloD0MIC5bqAh4KcUCUhpRSlGgVS8JoFkdAoDf6Wu5jIHV9lChoBmgJaA9DCA+3Q8PiNm9AlIaUUpRoFUuXaBZHQKA4D4lhPTJ1fZQoaAZoCWgPQwjc9dIUQSFyQJSGlFKUaBVLvmgWR0CgODDyvs7ddX2UKGgGaAloD0MI5wEs8isjckCUhpRSlGgVS7loFkdAoDg5KHwgDHV9lChoBmgJaA9DCPqAQGeS0HJAlIaUUpRoFUuxaBZHQKA4MiTMaCN1fZQoaAZoCWgPQwi5/8h0qPRyQJSGlFKUaBVLlWgWR0CgOGSiEg4fdX2UKGgGaAloD0MI88zLYffDckCUhpRSlGgVS8toFkdAoDh+8dxQznV9lChoBmgJaA9DCIyDS8fc53JAlIaUUpRoFUuhaBZHQKA41CqIacZ1fZQoaAZoCWgPQwicTUcAd9tyQJSGlFKUaBVL0WgWR0CgON1x82JjdX2UKGgGaAloD0MIscHCSRojckCUhpRSlGgVS7loFkdAoDjjnkkrw3V9lChoBmgJaA9DCMWQnEzcZHFAlIaUUpRoFUuTaBZHQKA49420iQl1fZQoaAZoCWgPQwgMy59vCwFyQJSGlFKUaBVLkWgWR0CgOQqB3A2ydX2UKGgGaAloD0MIaXHGMKdfcUCUhpRSlGgVS6loFkdAoDkIs3AEdXV9lChoBmgJaA9DCCxEh8BRhXJAlIaUUpRoFUuHaBZHQKA5HAu7HyV1fZQoaAZoCWgPQwiJDKt4I95zQJSGlFKUaBVL92gWR0CgOXn003wTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24788f47f53ed16adde0e518357cf34853a76e0d8f438e1301c86371d4aa4dd8
|
3 |
+
size 183510
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 269.09257489999993, "std_reward": 65.42859854148979, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T22:49:35.814497"}
|