Update README.md
Browse files
README.md
CHANGED
|
@@ -23,17 +23,90 @@ It achieves the following results on the evaluation set:
|
|
| 23 |
|
| 24 |
## Model description
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
##
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
### Training hyperparameters
|
| 39 |
|
|
|
|
| 23 |
|
| 24 |
## Model description
|
| 25 |
|
| 26 |
+
Machine Translation model from Hindi to English on bart small model.
|
| 27 |
+
|
| 28 |
+
## Inference and evaluation
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
import torch
|
| 32 |
+
import evaluate
|
| 33 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 34 |
+
|
| 35 |
+
class BartSmall():
|
| 36 |
+
def __init__(self, model_path = 'ar5entum/bart_hin_eng_mt', device = None):
|
| 37 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 38 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
| 39 |
+
if not device:
|
| 40 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 41 |
+
self.device = device
|
| 42 |
+
self.model.to(device)
|
| 43 |
+
|
| 44 |
+
def predict(self, input_text):
|
| 45 |
+
inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(self.device)
|
| 46 |
+
pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True)
|
| 47 |
+
prediction = self.tokenizer.decode(pred_ids[0], skip_special_tokens=True)
|
| 48 |
+
return prediction
|
| 49 |
+
|
| 50 |
+
def predict_batch(self, input_texts, batch_size=32):
|
| 51 |
+
all_predictions = []
|
| 52 |
+
for i in range(0, len(input_texts), batch_size):
|
| 53 |
+
batch_texts = input_texts[i:i+batch_size]
|
| 54 |
+
inputs = self.tokenizer(batch_texts, return_tensors="pt", max_length=512,
|
| 55 |
+
truncation=True, padding=True).to(self.device)
|
| 56 |
+
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
pred_ids = self.model.generate(inputs.input_ids,
|
| 59 |
+
max_length=512,
|
| 60 |
+
num_beams=4,
|
| 61 |
+
early_stopping=True)
|
| 62 |
+
|
| 63 |
+
predictions = self.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
| 64 |
+
all_predictions.extend(predictions)
|
| 65 |
+
|
| 66 |
+
return all_predictions
|
| 67 |
+
|
| 68 |
+
model = BartSmall(device='cuda')
|
| 69 |
+
|
| 70 |
+
input_texts = [
|
| 71 |
+
"यह शोध्य रकम है।",
|
| 72 |
+
"जानने के लिए देखें ये वीडियो.",
|
| 73 |
+
"वह दो बेटियों व एक बेटे का पिता था।"
|
| 74 |
+
]
|
| 75 |
+
ground_truths = [
|
| 76 |
+
"This is a repayable amount.",
|
| 77 |
+
"Watch this video to find out.",
|
| 78 |
+
"He was a father of two daughters and a son."
|
| 79 |
+
]
|
| 80 |
+
import time
|
| 81 |
+
start = time.time()
|
| 82 |
+
|
| 83 |
+
predictions = model.predict_batch(input_texts, batch_size=len(input_texts))
|
| 84 |
+
end = time.time()
|
| 85 |
+
print("TIME: ", end-start)
|
| 86 |
+
for i in range(len(input_texts)):
|
| 87 |
+
print("‾‾‾‾‾‾‾‾‾‾‾‾")
|
| 88 |
+
print("Input text:\t", input_texts[i])
|
| 89 |
+
print("Prediction:\t", predictions[i])
|
| 90 |
+
print("Ground Truth:\t", ground_truths[i])
|
| 91 |
+
bleu = evaluate.load("bleu")
|
| 92 |
+
results = bleu.compute(predictions=predictions, references=ground_truths)
|
| 93 |
+
print(results)
|
| 94 |
+
|
| 95 |
+
# TIME: 1.2374696731567383
|
| 96 |
+
# ‾‾‾‾‾‾‾‾‾‾‾‾
|
| 97 |
+
# Input text: यह शोध्य रकम है।
|
| 98 |
+
# Prediction: This is a repayable amount.
|
| 99 |
+
# Ground Truth: This is a repayable amount.
|
| 100 |
+
# ‾‾‾‾‾‾‾‾‾‾‾‾
|
| 101 |
+
# Input text: जानने के लिए देखें ये वीडियो.
|
| 102 |
+
# Prediction: View these videos to know.
|
| 103 |
+
# Ground Truth: Watch this video to find out.
|
| 104 |
+
# ‾‾‾‾‾‾‾‾‾‾‾‾
|
| 105 |
+
# Input text: वह दो बेटियों व एक बेटे का पिता था।
|
| 106 |
+
# Prediction: He was a father of two daughters and a son.
|
| 107 |
+
# Ground Truth: He was a father of two daughters and a son.
|
| 108 |
+
# {'bleu': 0.747875245486914, 'precisions': [0.8260869565217391, 0.75, 0.7647058823529411, 0.7857142857142857], 'brevity_penalty': 0.9574533680683809, 'length_ratio': 0.9583333333333334, 'translation_length': 23, 'reference_length': 24}
|
| 109 |
+
```
|
| 110 |
|
| 111 |
### Training hyperparameters
|
| 112 |
|