--- language: - en metrics: - accuracy pipeline_tag: text-classification library_name: bertopic tags: - code --- # SpamHunter Model This is a fine-tuned BERT model for spam detection. ## Model Details - **Base Model**: bert-base-uncased - **Dataset**: Custom spam emails dataset - **Training Steps**: 3 epochs - **Validation Accuracy**: ~99% ## How to Use ### Direct Integration with Transformers ```python from transformers import BertTokenizer, BertForSequenceClassification # Load model and tokenizer tokenizer = BertTokenizer.from_pretrained("ar4min/SpamHunter") model = BertForSequenceClassification.from_pretrained("ar4min/SpamHunter") # Example text = "Congratulations! You've won a $1000 gift card. Click here to claim now." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) prediction = outputs.logits.argmax(-1).item() print("Spam" if prediction == 1 else "Not Spam")