End of training
Browse files- README.md +2 -0
- all_results.json +16 -16
- eval_results.json +8 -8
- predict_results.json +4 -4
- predict_results.txt +55 -55
- runs/Jun03_09-57-46_a358b85c7679/events.out.tfevents.1717409561.a358b85c7679.18986.1 +3 -0
- train_results.json +4 -4
- trainer_state.json +203 -203
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: mit
|
3 |
base_model: indolem/indobert-base-uncased
|
4 |
tags:
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
license: mit
|
5 |
base_model: indolem/indobert-base-uncased
|
6 |
tags:
|
all_results.json
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
"epoch": 20.0,
|
4 |
-
"eval_accuracy": 0.
|
5 |
-
"eval_f1": 0.
|
6 |
-
"eval_loss": 0.
|
7 |
-
"eval_precision": 0.
|
8 |
-
"eval_recall": 0.
|
9 |
-
"eval_runtime":
|
10 |
"eval_samples": 399,
|
11 |
-
"eval_samples_per_second":
|
12 |
-
"eval_steps_per_second":
|
13 |
-
"f1": 0.
|
14 |
-
"precision": 0.
|
15 |
-
"recall": 0.
|
16 |
-
"train_loss": 0.
|
17 |
-
"train_runtime":
|
18 |
"train_samples": 3638,
|
19 |
-
"train_samples_per_second":
|
20 |
-
"train_steps_per_second":
|
21 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.9119683481701286,
|
3 |
"epoch": 20.0,
|
4 |
+
"eval_accuracy": 0.9022556390977443,
|
5 |
+
"eval_f1": 0.8799463033398397,
|
6 |
+
"eval_loss": 0.790817379951477,
|
7 |
+
"eval_precision": 0.8874803397294746,
|
8 |
+
"eval_recall": 0.8733406073831607,
|
9 |
+
"eval_runtime": 1.6569,
|
10 |
"eval_samples": 399,
|
11 |
+
"eval_samples_per_second": 240.805,
|
12 |
+
"eval_steps_per_second": 30.176,
|
13 |
+
"f1": 0.8952398693685564,
|
14 |
+
"precision": 0.8913160733549084,
|
15 |
+
"recall": 0.8995006447847737,
|
16 |
+
"train_loss": 0.0588726386183598,
|
17 |
+
"train_runtime": 864.0501,
|
18 |
"train_samples": 3638,
|
19 |
+
"train_samples_per_second": 84.208,
|
20 |
+
"train_steps_per_second": 2.824
|
21 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
"eval_samples": 399,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"eval_accuracy": 0.9022556390977443,
|
4 |
+
"eval_f1": 0.8799463033398397,
|
5 |
+
"eval_loss": 0.790817379951477,
|
6 |
+
"eval_precision": 0.8874803397294746,
|
7 |
+
"eval_recall": 0.8733406073831607,
|
8 |
+
"eval_runtime": 1.6569,
|
9 |
"eval_samples": 399,
|
10 |
+
"eval_samples_per_second": 240.805,
|
11 |
+
"eval_steps_per_second": 30.176
|
12 |
}
|
predict_results.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
-
"f1": 0.
|
4 |
-
"precision": 0.
|
5 |
-
"recall": 0.
|
6 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.9119683481701286,
|
3 |
+
"f1": 0.8952398693685564,
|
4 |
+
"precision": 0.8913160733549084,
|
5 |
+
"recall": 0.8995006447847737
|
6 |
}
|
predict_results.txt
CHANGED
@@ -3,7 +3,7 @@ index prediction
|
|
3 |
1 1
|
4 |
2 1
|
5 |
3 1
|
6 |
-
4
|
7 |
5 0
|
8 |
6 1
|
9 |
7 1
|
@@ -20,12 +20,12 @@ index prediction
|
|
20 |
18 1
|
21 |
19 1
|
22 |
20 1
|
23 |
-
21
|
24 |
-
22
|
25 |
23 1
|
26 |
24 1
|
27 |
-
25
|
28 |
-
26
|
29 |
27 1
|
30 |
28 1
|
31 |
29 1
|
@@ -35,7 +35,7 @@ index prediction
|
|
35 |
33 1
|
36 |
34 1
|
37 |
35 1
|
38 |
-
36
|
39 |
37 1
|
40 |
38 1
|
41 |
39 1
|
@@ -50,13 +50,13 @@ index prediction
|
|
50 |
48 1
|
51 |
49 1
|
52 |
50 1
|
53 |
-
51
|
54 |
52 1
|
55 |
53 1
|
56 |
54 0
|
57 |
55 1
|
58 |
56 1
|
59 |
-
57
|
60 |
58 1
|
61 |
59 1
|
62 |
60 0
|
@@ -66,7 +66,7 @@ index prediction
|
|
66 |
64 1
|
67 |
65 1
|
68 |
66 1
|
69 |
-
67
|
70 |
68 0
|
71 |
69 1
|
72 |
70 1
|
@@ -86,7 +86,7 @@ index prediction
|
|
86 |
84 1
|
87 |
85 1
|
88 |
86 1
|
89 |
-
87
|
90 |
88 1
|
91 |
89 1
|
92 |
90 0
|
@@ -109,17 +109,17 @@ index prediction
|
|
109 |
107 1
|
110 |
108 1
|
111 |
109 1
|
112 |
-
110
|
113 |
111 1
|
114 |
112 1
|
115 |
113 1
|
116 |
114 1
|
117 |
-
115
|
118 |
116 1
|
119 |
117 1
|
120 |
118 1
|
121 |
119 1
|
122 |
-
120
|
123 |
121 0
|
124 |
122 1
|
125 |
123 1
|
@@ -130,7 +130,7 @@ index prediction
|
|
130 |
128 1
|
131 |
129 1
|
132 |
130 0
|
133 |
-
131
|
134 |
132 1
|
135 |
133 1
|
136 |
134 1
|
@@ -148,9 +148,9 @@ index prediction
|
|
148 |
146 1
|
149 |
147 1
|
150 |
148 1
|
151 |
-
149
|
152 |
150 1
|
153 |
-
151
|
154 |
152 1
|
155 |
153 1
|
156 |
154 1
|
@@ -180,7 +180,7 @@ index prediction
|
|
180 |
178 1
|
181 |
179 1
|
182 |
180 1
|
183 |
-
181
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
@@ -239,7 +239,7 @@ index prediction
|
|
239 |
237 0
|
240 |
238 1
|
241 |
239 1
|
242 |
-
240
|
243 |
241 1
|
244 |
242 1
|
245 |
243 1
|
@@ -253,16 +253,16 @@ index prediction
|
|
253 |
251 1
|
254 |
252 1
|
255 |
253 1
|
256 |
-
254
|
257 |
255 1
|
258 |
-
256
|
259 |
-
257
|
260 |
-
258
|
261 |
259 1
|
262 |
-
260
|
263 |
261 1
|
264 |
262 1
|
265 |
-
263
|
266 |
264 1
|
267 |
265 1
|
268 |
266 1
|
@@ -285,10 +285,10 @@ index prediction
|
|
285 |
283 1
|
286 |
284 1
|
287 |
285 1
|
288 |
-
286
|
289 |
287 1
|
290 |
288 1
|
291 |
-
289
|
292 |
290 1
|
293 |
291 1
|
294 |
292 1
|
@@ -322,7 +322,7 @@ index prediction
|
|
322 |
320 0
|
323 |
321 0
|
324 |
322 0
|
325 |
-
323
|
326 |
324 0
|
327 |
325 0
|
328 |
326 0
|
@@ -339,9 +339,9 @@ index prediction
|
|
339 |
337 0
|
340 |
338 1
|
341 |
339 0
|
342 |
-
340
|
343 |
341 0
|
344 |
-
342
|
345 |
343 0
|
346 |
344 0
|
347 |
345 0
|
@@ -368,7 +368,7 @@ index prediction
|
|
368 |
366 0
|
369 |
367 0
|
370 |
368 0
|
371 |
-
369
|
372 |
370 0
|
373 |
371 0
|
374 |
372 0
|
@@ -434,7 +434,7 @@ index prediction
|
|
434 |
432 0
|
435 |
433 0
|
436 |
434 1
|
437 |
-
435
|
438 |
436 0
|
439 |
437 0
|
440 |
438 0
|
@@ -456,7 +456,7 @@ index prediction
|
|
456 |
454 0
|
457 |
455 1
|
458 |
456 0
|
459 |
-
457
|
460 |
458 0
|
461 |
459 0
|
462 |
460 0
|
@@ -486,7 +486,7 @@ index prediction
|
|
486 |
484 0
|
487 |
485 0
|
488 |
486 0
|
489 |
-
487
|
490 |
488 0
|
491 |
489 0
|
492 |
490 0
|
@@ -497,7 +497,7 @@ index prediction
|
|
497 |
495 0
|
498 |
496 0
|
499 |
497 0
|
500 |
-
498
|
501 |
499 0
|
502 |
500 0
|
503 |
501 0
|
@@ -508,7 +508,7 @@ index prediction
|
|
508 |
506 0
|
509 |
507 0
|
510 |
508 1
|
511 |
-
509
|
512 |
510 0
|
513 |
511 0
|
514 |
512 0
|
@@ -521,8 +521,8 @@ index prediction
|
|
521 |
519 0
|
522 |
520 0
|
523 |
521 0
|
524 |
-
522
|
525 |
-
523
|
526 |
524 0
|
527 |
525 0
|
528 |
526 0
|
@@ -580,7 +580,7 @@ index prediction
|
|
580 |
578 0
|
581 |
579 1
|
582 |
580 0
|
583 |
-
581
|
584 |
582 1
|
585 |
583 0
|
586 |
584 0
|
@@ -590,7 +590,7 @@ index prediction
|
|
590 |
588 1
|
591 |
589 0
|
592 |
590 0
|
593 |
-
591
|
594 |
592 0
|
595 |
593 0
|
596 |
594 0
|
@@ -605,7 +605,7 @@ index prediction
|
|
605 |
603 0
|
606 |
604 1
|
607 |
605 0
|
608 |
-
606
|
609 |
607 0
|
610 |
608 0
|
611 |
609 0
|
@@ -664,7 +664,7 @@ index prediction
|
|
664 |
662 0
|
665 |
663 0
|
666 |
664 0
|
667 |
-
665
|
668 |
666 0
|
669 |
667 1
|
670 |
668 0
|
@@ -709,7 +709,7 @@ index prediction
|
|
709 |
707 0
|
710 |
708 0
|
711 |
709 0
|
712 |
-
710
|
713 |
711 0
|
714 |
712 1
|
715 |
713 0
|
@@ -723,7 +723,7 @@ index prediction
|
|
723 |
721 0
|
724 |
722 0
|
725 |
723 0
|
726 |
-
724
|
727 |
725 0
|
728 |
726 0
|
729 |
727 0
|
@@ -736,7 +736,7 @@ index prediction
|
|
736 |
734 1
|
737 |
735 0
|
738 |
736 0
|
739 |
-
737
|
740 |
738 0
|
741 |
739 0
|
742 |
740 0
|
@@ -812,7 +812,7 @@ index prediction
|
|
812 |
810 0
|
813 |
811 0
|
814 |
812 1
|
815 |
-
813
|
816 |
814 0
|
817 |
815 0
|
818 |
816 0
|
@@ -838,19 +838,19 @@ index prediction
|
|
838 |
836 0
|
839 |
837 0
|
840 |
838 0
|
841 |
-
839
|
842 |
840 0
|
843 |
841 0
|
844 |
842 0
|
845 |
843 0
|
846 |
844 0
|
847 |
845 0
|
848 |
-
846
|
849 |
847 0
|
850 |
848 0
|
851 |
849 0
|
852 |
-
850
|
853 |
-
851
|
854 |
852 1
|
855 |
853 0
|
856 |
854 1
|
@@ -862,7 +862,7 @@ index prediction
|
|
862 |
860 0
|
863 |
861 0
|
864 |
862 0
|
865 |
-
863
|
866 |
864 0
|
867 |
865 1
|
868 |
866 0
|
@@ -892,13 +892,13 @@ index prediction
|
|
892 |
890 0
|
893 |
891 0
|
894 |
892 0
|
895 |
-
893
|
896 |
894 0
|
897 |
895 0
|
898 |
896 1
|
899 |
897 0
|
900 |
898 0
|
901 |
-
899
|
902 |
900 0
|
903 |
901 0
|
904 |
902 0
|
@@ -916,7 +916,7 @@ index prediction
|
|
916 |
914 0
|
917 |
915 0
|
918 |
916 0
|
919 |
-
917
|
920 |
918 0
|
921 |
919 0
|
922 |
920 0
|
@@ -953,7 +953,7 @@ index prediction
|
|
953 |
951 0
|
954 |
952 0
|
955 |
953 0
|
956 |
-
954
|
957 |
955 0
|
958 |
956 0
|
959 |
957 0
|
@@ -981,7 +981,7 @@ index prediction
|
|
981 |
979 0
|
982 |
980 0
|
983 |
981 0
|
984 |
-
982
|
985 |
983 0
|
986 |
984 0
|
987 |
985 0
|
|
|
3 |
1 1
|
4 |
2 1
|
5 |
3 1
|
6 |
+
4 0
|
7 |
5 0
|
8 |
6 1
|
9 |
7 1
|
|
|
20 |
18 1
|
21 |
19 1
|
22 |
20 1
|
23 |
+
21 1
|
24 |
+
22 0
|
25 |
23 1
|
26 |
24 1
|
27 |
+
25 1
|
28 |
+
26 1
|
29 |
27 1
|
30 |
28 1
|
31 |
29 1
|
|
|
35 |
33 1
|
36 |
34 1
|
37 |
35 1
|
38 |
+
36 1
|
39 |
37 1
|
40 |
38 1
|
41 |
39 1
|
|
|
50 |
48 1
|
51 |
49 1
|
52 |
50 1
|
53 |
+
51 0
|
54 |
52 1
|
55 |
53 1
|
56 |
54 0
|
57 |
55 1
|
58 |
56 1
|
59 |
+
57 0
|
60 |
58 1
|
61 |
59 1
|
62 |
60 0
|
|
|
66 |
64 1
|
67 |
65 1
|
68 |
66 1
|
69 |
+
67 1
|
70 |
68 0
|
71 |
69 1
|
72 |
70 1
|
|
|
86 |
84 1
|
87 |
85 1
|
88 |
86 1
|
89 |
+
87 1
|
90 |
88 1
|
91 |
89 1
|
92 |
90 0
|
|
|
109 |
107 1
|
110 |
108 1
|
111 |
109 1
|
112 |
+
110 0
|
113 |
111 1
|
114 |
112 1
|
115 |
113 1
|
116 |
114 1
|
117 |
+
115 1
|
118 |
116 1
|
119 |
117 1
|
120 |
118 1
|
121 |
119 1
|
122 |
+
120 1
|
123 |
121 0
|
124 |
122 1
|
125 |
123 1
|
|
|
130 |
128 1
|
131 |
129 1
|
132 |
130 0
|
133 |
+
131 0
|
134 |
132 1
|
135 |
133 1
|
136 |
134 1
|
|
|
148 |
146 1
|
149 |
147 1
|
150 |
148 1
|
151 |
+
149 0
|
152 |
150 1
|
153 |
+
151 1
|
154 |
152 1
|
155 |
153 1
|
156 |
154 1
|
|
|
180 |
178 1
|
181 |
179 1
|
182 |
180 1
|
183 |
+
181 0
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
|
|
239 |
237 0
|
240 |
238 1
|
241 |
239 1
|
242 |
+
240 1
|
243 |
241 1
|
244 |
242 1
|
245 |
243 1
|
|
|
253 |
251 1
|
254 |
252 1
|
255 |
253 1
|
256 |
+
254 1
|
257 |
255 1
|
258 |
+
256 0
|
259 |
+
257 1
|
260 |
+
258 0
|
261 |
259 1
|
262 |
+
260 0
|
263 |
261 1
|
264 |
262 1
|
265 |
+
263 1
|
266 |
264 1
|
267 |
265 1
|
268 |
266 1
|
|
|
285 |
283 1
|
286 |
284 1
|
287 |
285 1
|
288 |
+
286 0
|
289 |
287 1
|
290 |
288 1
|
291 |
+
289 0
|
292 |
290 1
|
293 |
291 1
|
294 |
292 1
|
|
|
322 |
320 0
|
323 |
321 0
|
324 |
322 0
|
325 |
+
323 1
|
326 |
324 0
|
327 |
325 0
|
328 |
326 0
|
|
|
339 |
337 0
|
340 |
338 1
|
341 |
339 0
|
342 |
+
340 1
|
343 |
341 0
|
344 |
+
342 0
|
345 |
343 0
|
346 |
344 0
|
347 |
345 0
|
|
|
368 |
366 0
|
369 |
367 0
|
370 |
368 0
|
371 |
+
369 1
|
372 |
370 0
|
373 |
371 0
|
374 |
372 0
|
|
|
434 |
432 0
|
435 |
433 0
|
436 |
434 1
|
437 |
+
435 0
|
438 |
436 0
|
439 |
437 0
|
440 |
438 0
|
|
|
456 |
454 0
|
457 |
455 1
|
458 |
456 0
|
459 |
+
457 1
|
460 |
458 0
|
461 |
459 0
|
462 |
460 0
|
|
|
486 |
484 0
|
487 |
485 0
|
488 |
486 0
|
489 |
+
487 1
|
490 |
488 0
|
491 |
489 0
|
492 |
490 0
|
|
|
497 |
495 0
|
498 |
496 0
|
499 |
497 0
|
500 |
+
498 1
|
501 |
499 0
|
502 |
500 0
|
503 |
501 0
|
|
|
508 |
506 0
|
509 |
507 0
|
510 |
508 1
|
511 |
+
509 1
|
512 |
510 0
|
513 |
511 0
|
514 |
512 0
|
|
|
521 |
519 0
|
522 |
520 0
|
523 |
521 0
|
524 |
+
522 1
|
525 |
+
523 0
|
526 |
524 0
|
527 |
525 0
|
528 |
526 0
|
|
|
580 |
578 0
|
581 |
579 1
|
582 |
580 0
|
583 |
+
581 0
|
584 |
582 1
|
585 |
583 0
|
586 |
584 0
|
|
|
590 |
588 1
|
591 |
589 0
|
592 |
590 0
|
593 |
+
591 0
|
594 |
592 0
|
595 |
593 0
|
596 |
594 0
|
|
|
605 |
603 0
|
606 |
604 1
|
607 |
605 0
|
608 |
+
606 0
|
609 |
607 0
|
610 |
608 0
|
611 |
609 0
|
|
|
664 |
662 0
|
665 |
663 0
|
666 |
664 0
|
667 |
+
665 0
|
668 |
666 0
|
669 |
667 1
|
670 |
668 0
|
|
|
709 |
707 0
|
710 |
708 0
|
711 |
709 0
|
712 |
+
710 1
|
713 |
711 0
|
714 |
712 1
|
715 |
713 0
|
|
|
723 |
721 0
|
724 |
722 0
|
725 |
723 0
|
726 |
+
724 0
|
727 |
725 0
|
728 |
726 0
|
729 |
727 0
|
|
|
736 |
734 1
|
737 |
735 0
|
738 |
736 0
|
739 |
+
737 1
|
740 |
738 0
|
741 |
739 0
|
742 |
740 0
|
|
|
812 |
810 0
|
813 |
811 0
|
814 |
812 1
|
815 |
+
813 0
|
816 |
814 0
|
817 |
815 0
|
818 |
816 0
|
|
|
838 |
836 0
|
839 |
837 0
|
840 |
838 0
|
841 |
+
839 0
|
842 |
840 0
|
843 |
841 0
|
844 |
842 0
|
845 |
843 0
|
846 |
844 0
|
847 |
845 0
|
848 |
+
846 1
|
849 |
847 0
|
850 |
848 0
|
851 |
849 0
|
852 |
+
850 1
|
853 |
+
851 1
|
854 |
852 1
|
855 |
853 0
|
856 |
854 1
|
|
|
862 |
860 0
|
863 |
861 0
|
864 |
862 0
|
865 |
+
863 0
|
866 |
864 0
|
867 |
865 1
|
868 |
866 0
|
|
|
892 |
890 0
|
893 |
891 0
|
894 |
892 0
|
895 |
+
893 1
|
896 |
894 0
|
897 |
895 0
|
898 |
896 1
|
899 |
897 0
|
900 |
898 0
|
901 |
+
899 0
|
902 |
900 0
|
903 |
901 0
|
904 |
902 0
|
|
|
916 |
914 0
|
917 |
915 0
|
918 |
916 0
|
919 |
+
917 0
|
920 |
918 0
|
921 |
919 0
|
922 |
920 0
|
|
|
953 |
951 0
|
954 |
952 0
|
955 |
953 0
|
956 |
+
954 0
|
957 |
955 0
|
958 |
956 0
|
959 |
957 0
|
|
|
981 |
979 0
|
982 |
980 0
|
983 |
981 0
|
984 |
+
982 0
|
985 |
983 0
|
986 |
984 0
|
987 |
985 0
|
runs/Jun03_09-57-46_a358b85c7679/events.out.tfevents.1717409561.a358b85c7679.18986.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d48601fe52b0be1678a007861adb9d43e2e9a7da888092d086e7a47c15375e71
|
3 |
+
size 560
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 3638,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"train_loss": 0.0588726386183598,
|
4 |
+
"train_runtime": 864.0501,
|
5 |
"train_samples": 3638,
|
6 |
+
"train_samples_per_second": 84.208,
|
7 |
+
"train_steps_per_second": 2.824
|
8 |
}
|
trainer_state.json
CHANGED
@@ -10,392 +10,392 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
-
"grad_norm":
|
14 |
"learning_rate": 4.75e-05,
|
15 |
-
"loss": 0.
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
-
"eval_accuracy": 0.
|
21 |
-
"eval_f1": 0.
|
22 |
-
"eval_loss": 0.
|
23 |
-
"eval_precision": 0.
|
24 |
-
"eval_recall": 0.
|
25 |
-
"eval_runtime":
|
26 |
-
"eval_samples_per_second":
|
27 |
-
"eval_steps_per_second":
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
-
"grad_norm":
|
33 |
"learning_rate": 4.5e-05,
|
34 |
-
"loss": 0.
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
-
"eval_accuracy": 0.
|
40 |
-
"eval_f1": 0.
|
41 |
-
"eval_loss": 0.
|
42 |
-
"eval_precision": 0.
|
43 |
-
"eval_recall": 0.
|
44 |
-
"eval_runtime":
|
45 |
-
"eval_samples_per_second":
|
46 |
-
"eval_steps_per_second":
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
-
"grad_norm":
|
52 |
"learning_rate": 4.25e-05,
|
53 |
-
"loss": 0.
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
-
"eval_accuracy": 0.
|
59 |
-
"eval_f1": 0.
|
60 |
-
"eval_loss": 0.
|
61 |
-
"eval_precision": 0.
|
62 |
-
"eval_recall": 0.
|
63 |
-
"eval_runtime":
|
64 |
-
"eval_samples_per_second":
|
65 |
-
"eval_steps_per_second":
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
-
"grad_norm":
|
71 |
"learning_rate": 4e-05,
|
72 |
-
"loss": 0.
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
-
"eval_accuracy": 0.
|
78 |
-
"eval_f1": 0.
|
79 |
-
"eval_loss": 0.
|
80 |
-
"eval_precision": 0.
|
81 |
-
"eval_recall": 0.
|
82 |
-
"eval_runtime":
|
83 |
-
"eval_samples_per_second":
|
84 |
-
"eval_steps_per_second":
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
-
"grad_norm":
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
-
"loss": 0.
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
-
"eval_accuracy": 0.
|
97 |
-
"eval_f1": 0.
|
98 |
-
"eval_loss": 0.
|
99 |
-
"eval_precision": 0.
|
100 |
-
"eval_recall": 0.
|
101 |
-
"eval_runtime":
|
102 |
-
"eval_samples_per_second":
|
103 |
-
"eval_steps_per_second":
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
-
"grad_norm":
|
109 |
"learning_rate": 3.5e-05,
|
110 |
-
"loss": 0.
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
-
"eval_accuracy": 0.
|
116 |
-
"eval_f1": 0.
|
117 |
-
"eval_loss": 0.
|
118 |
-
"eval_precision": 0.
|
119 |
-
"eval_recall": 0.
|
120 |
-
"eval_runtime":
|
121 |
-
"eval_samples_per_second":
|
122 |
-
"eval_steps_per_second":
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
-
"grad_norm": 0.
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
-
"loss": 0.
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
"eval_accuracy": 0.8972431077694235,
|
135 |
-
"eval_f1": 0.
|
136 |
-
"eval_loss": 0.
|
137 |
-
"eval_precision": 0.
|
138 |
-
"eval_recall": 0.
|
139 |
-
"eval_runtime":
|
140 |
-
"eval_samples_per_second":
|
141 |
-
"eval_steps_per_second":
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
-
"grad_norm": 0.
|
147 |
"learning_rate": 3e-05,
|
148 |
-
"loss": 0.
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
-
"eval_accuracy": 0.
|
154 |
-
"eval_f1": 0.
|
155 |
-
"eval_loss": 0.
|
156 |
-
"eval_precision": 0.
|
157 |
-
"eval_recall": 0.
|
158 |
-
"eval_runtime":
|
159 |
-
"eval_samples_per_second":
|
160 |
-
"eval_steps_per_second":
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
-
"grad_norm": 0.
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
-
"loss": 0.
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
-
"eval_accuracy": 0.
|
173 |
-
"eval_f1": 0.
|
174 |
-
"eval_loss": 0.
|
175 |
-
"eval_precision": 0.
|
176 |
-
"eval_recall": 0.
|
177 |
-
"eval_runtime":
|
178 |
-
"eval_samples_per_second":
|
179 |
-
"eval_steps_per_second":
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
-
"grad_norm": 0.
|
185 |
"learning_rate": 2.5e-05,
|
186 |
-
"loss": 0.
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
-
"eval_accuracy": 0.
|
192 |
-
"eval_f1": 0.
|
193 |
-
"eval_loss": 0.
|
194 |
-
"eval_precision": 0.
|
195 |
-
"eval_recall": 0.
|
196 |
-
"eval_runtime":
|
197 |
-
"eval_samples_per_second":
|
198 |
-
"eval_steps_per_second":
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
-
"grad_norm": 0.
|
204 |
"learning_rate": 2.25e-05,
|
205 |
-
"loss": 0.
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
-
"eval_accuracy": 0.
|
211 |
-
"eval_f1": 0.
|
212 |
-
"eval_loss": 0.
|
213 |
-
"eval_precision": 0.
|
214 |
-
"eval_recall": 0.
|
215 |
-
"eval_runtime":
|
216 |
-
"eval_samples_per_second":
|
217 |
-
"eval_steps_per_second":
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
-
"grad_norm": 0.
|
223 |
"learning_rate": 2e-05,
|
224 |
-
"loss": 0.
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
-
"eval_accuracy": 0.
|
230 |
-
"eval_f1": 0.
|
231 |
-
"eval_loss": 0.
|
232 |
-
"eval_precision": 0.
|
233 |
-
"eval_recall": 0.
|
234 |
-
"eval_runtime":
|
235 |
-
"eval_samples_per_second":
|
236 |
-
"eval_steps_per_second":
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
-
"grad_norm": 0.
|
242 |
"learning_rate": 1.75e-05,
|
243 |
-
"loss": 0.
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
-
"eval_accuracy": 0.
|
249 |
-
"eval_f1": 0.
|
250 |
-
"eval_loss": 0.
|
251 |
-
"eval_precision": 0.
|
252 |
-
"eval_recall": 0.
|
253 |
-
"eval_runtime":
|
254 |
-
"eval_samples_per_second":
|
255 |
-
"eval_steps_per_second":
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
-
"grad_norm": 0.
|
261 |
"learning_rate": 1.5e-05,
|
262 |
-
"loss": 0.
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
-
"eval_accuracy": 0.
|
268 |
-
"eval_f1": 0.
|
269 |
-
"eval_loss": 0.
|
270 |
-
"eval_precision": 0.
|
271 |
-
"eval_recall": 0.
|
272 |
-
"eval_runtime":
|
273 |
-
"eval_samples_per_second":
|
274 |
-
"eval_steps_per_second":
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
-
"grad_norm": 0.
|
280 |
"learning_rate": 1.25e-05,
|
281 |
-
"loss": 0.
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
-
"eval_accuracy": 0.
|
287 |
-
"eval_f1": 0.
|
288 |
-
"eval_loss": 0.
|
289 |
-
"eval_precision": 0.
|
290 |
-
"eval_recall": 0.
|
291 |
-
"eval_runtime":
|
292 |
-
"eval_samples_per_second":
|
293 |
-
"eval_steps_per_second":
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
-
"grad_norm": 0.
|
299 |
"learning_rate": 1e-05,
|
300 |
-
"loss": 0.
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
-
"eval_accuracy": 0.
|
306 |
-
"eval_f1": 0.
|
307 |
-
"eval_loss": 0.
|
308 |
-
"eval_precision": 0.
|
309 |
-
"eval_recall": 0.
|
310 |
-
"eval_runtime":
|
311 |
-
"eval_samples_per_second":
|
312 |
-
"eval_steps_per_second":
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
-
"grad_norm": 0.
|
318 |
"learning_rate": 7.5e-06,
|
319 |
-
"loss": 0.
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
-
"eval_accuracy": 0.
|
325 |
-
"eval_f1": 0.
|
326 |
-
"eval_loss": 0.
|
327 |
-
"eval_precision": 0.
|
328 |
-
"eval_recall": 0.
|
329 |
-
"eval_runtime":
|
330 |
-
"eval_samples_per_second":
|
331 |
-
"eval_steps_per_second":
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
-
"grad_norm": 0.
|
337 |
"learning_rate": 5e-06,
|
338 |
-
"loss": 0.
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
-
"eval_accuracy": 0.
|
344 |
-
"eval_f1": 0.
|
345 |
-
"eval_loss": 0.
|
346 |
-
"eval_precision": 0.
|
347 |
-
"eval_recall": 0.
|
348 |
-
"eval_runtime":
|
349 |
-
"eval_samples_per_second":
|
350 |
-
"eval_steps_per_second":
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
-
"grad_norm": 0.
|
356 |
"learning_rate": 2.5e-06,
|
357 |
-
"loss": 0.
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
-
"eval_accuracy": 0.
|
363 |
-
"eval_f1": 0.
|
364 |
-
"eval_loss": 0.
|
365 |
-
"eval_precision": 0.
|
366 |
-
"eval_recall": 0.
|
367 |
-
"eval_runtime":
|
368 |
-
"eval_samples_per_second":
|
369 |
-
"eval_steps_per_second":
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
-
"grad_norm": 0.
|
375 |
"learning_rate": 0.0,
|
376 |
-
"loss": 0.
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
-
"eval_accuracy": 0.
|
382 |
-
"eval_f1": 0.
|
383 |
-
"eval_loss": 0.
|
384 |
-
"eval_precision": 0.
|
385 |
-
"eval_recall": 0.
|
386 |
-
"eval_runtime":
|
387 |
-
"eval_samples_per_second":
|
388 |
-
"eval_steps_per_second":
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 7584162436176000.0,
|
395 |
-
"train_loss": 0.
|
396 |
-
"train_runtime":
|
397 |
-
"train_samples_per_second":
|
398 |
-
"train_steps_per_second":
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
+
"grad_norm": 20.136756896972656,
|
14 |
"learning_rate": 4.75e-05,
|
15 |
+
"loss": 0.3889,
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
+
"eval_accuracy": 0.8045112781954887,
|
21 |
+
"eval_f1": 0.7109554944646705,
|
22 |
+
"eval_loss": 0.4199941158294678,
|
23 |
+
"eval_precision": 0.8255285412262157,
|
24 |
+
"eval_recall": 0.6866703036915802,
|
25 |
+
"eval_runtime": 1.6394,
|
26 |
+
"eval_samples_per_second": 243.375,
|
27 |
+
"eval_steps_per_second": 30.498,
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
+
"grad_norm": 24.683944702148438,
|
33 |
"learning_rate": 4.5e-05,
|
34 |
+
"loss": 0.2335,
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.8922305764411027,
|
40 |
+
"eval_f1": 0.8739355018846853,
|
41 |
+
"eval_loss": 0.3136064410209656,
|
42 |
+
"eval_precision": 0.864426651415499,
|
43 |
+
"eval_recall": 0.886252045826514,
|
44 |
+
"eval_runtime": 1.6497,
|
45 |
+
"eval_samples_per_second": 241.866,
|
46 |
+
"eval_steps_per_second": 30.309,
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
+
"grad_norm": 66.46725463867188,
|
52 |
"learning_rate": 4.25e-05,
|
53 |
+
"loss": 0.1411,
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.8972431077694235,
|
59 |
+
"eval_f1": 0.8751002084335417,
|
60 |
+
"eval_loss": 0.35689812898635864,
|
61 |
+
"eval_precision": 0.8780701754385964,
|
62 |
+
"eval_recall": 0.8722949627204946,
|
63 |
+
"eval_runtime": 1.6606,
|
64 |
+
"eval_samples_per_second": 240.275,
|
65 |
+
"eval_steps_per_second": 30.11,
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
+
"grad_norm": 42.06414031982422,
|
71 |
"learning_rate": 4e-05,
|
72 |
+
"loss": 0.1078,
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
+
"eval_accuracy": 0.9147869674185464,
|
78 |
+
"eval_f1": 0.8991765265473572,
|
79 |
+
"eval_loss": 0.35370269417762756,
|
80 |
+
"eval_precision": 0.8922773722627737,
|
81 |
+
"eval_recall": 0.9072104018912529,
|
82 |
+
"eval_runtime": 1.653,
|
83 |
+
"eval_samples_per_second": 241.378,
|
84 |
+
"eval_steps_per_second": 30.248,
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
+
"grad_norm": 88.54315185546875,
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
+
"loss": 0.0822,
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
+
"eval_accuracy": 0.8796992481203008,
|
97 |
+
"eval_f1": 0.8439374185136896,
|
98 |
+
"eval_loss": 0.5069139003753662,
|
99 |
+
"eval_precision": 0.8794955044955045,
|
100 |
+
"eval_recall": 0.822376795781051,
|
101 |
+
"eval_runtime": 1.6524,
|
102 |
+
"eval_samples_per_second": 241.466,
|
103 |
+
"eval_steps_per_second": 30.259,
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
+
"grad_norm": 114.8245849609375,
|
109 |
"learning_rate": 3.5e-05,
|
110 |
+
"loss": 0.0529,
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
+
"eval_accuracy": 0.9072681704260651,
|
116 |
+
"eval_f1": 0.888964101175568,
|
117 |
+
"eval_loss": 0.42624175548553467,
|
118 |
+
"eval_precision": 0.8862007168458781,
|
119 |
+
"eval_recall": 0.8918894344426259,
|
120 |
+
"eval_runtime": 1.6561,
|
121 |
+
"eval_samples_per_second": 240.934,
|
122 |
+
"eval_steps_per_second": 30.192,
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
+
"grad_norm": 0.022069375962018967,
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
+
"loss": 0.0365,
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
"eval_accuracy": 0.8972431077694235,
|
135 |
+
"eval_f1": 0.8769602202215754,
|
136 |
+
"eval_loss": 0.5586097836494446,
|
137 |
+
"eval_precision": 0.8742831541218639,
|
138 |
+
"eval_recall": 0.8797963266048372,
|
139 |
+
"eval_runtime": 1.6532,
|
140 |
+
"eval_samples_per_second": 241.352,
|
141 |
+
"eval_steps_per_second": 30.245,
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
+
"grad_norm": 0.0406961552798748,
|
147 |
"learning_rate": 3e-05,
|
148 |
+
"loss": 0.033,
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
+
"eval_accuracy": 0.8947368421052632,
|
154 |
+
"eval_f1": 0.8674628282189181,
|
155 |
+
"eval_loss": 0.5012311935424805,
|
156 |
+
"eval_precision": 0.8869858462356303,
|
157 |
+
"eval_recall": 0.8530187306783051,
|
158 |
+
"eval_runtime": 1.6551,
|
159 |
+
"eval_samples_per_second": 241.075,
|
160 |
+
"eval_steps_per_second": 30.21,
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
+
"grad_norm": 0.6461573243141174,
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
+
"loss": 0.0248,
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
+
"eval_accuracy": 0.8922305764411027,
|
173 |
+
"eval_f1": 0.8631217838765008,
|
174 |
+
"eval_loss": 0.583283007144928,
|
175 |
+
"eval_precision": 0.8872804935927859,
|
176 |
+
"eval_recall": 0.8462447717766868,
|
177 |
+
"eval_runtime": 1.6572,
|
178 |
+
"eval_samples_per_second": 240.772,
|
179 |
+
"eval_steps_per_second": 30.172,
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
+
"grad_norm": 0.12847253680229187,
|
185 |
"learning_rate": 2.5e-05,
|
186 |
+
"loss": 0.0123,
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
+
"eval_accuracy": 0.9022556390977443,
|
192 |
+
"eval_f1": 0.8805765113084321,
|
193 |
+
"eval_loss": 0.6610547304153442,
|
194 |
+
"eval_precision": 0.8857796167247387,
|
195 |
+
"eval_recall": 0.8758410620112748,
|
196 |
+
"eval_runtime": 1.6505,
|
197 |
+
"eval_samples_per_second": 241.744,
|
198 |
+
"eval_steps_per_second": 30.294,
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
+
"grad_norm": 0.003805552376434207,
|
204 |
"learning_rate": 2.25e-05,
|
205 |
+
"loss": 0.0088,
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
+
"eval_accuracy": 0.8947368421052632,
|
211 |
+
"eval_f1": 0.8682132746146587,
|
212 |
+
"eval_loss": 0.6935672760009766,
|
213 |
+
"eval_precision": 0.884741537654159,
|
214 |
+
"eval_recall": 0.8555191853064193,
|
215 |
+
"eval_runtime": 1.6547,
|
216 |
+
"eval_samples_per_second": 241.138,
|
217 |
+
"eval_steps_per_second": 30.218,
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
+
"grad_norm": 0.0037182692904025316,
|
223 |
"learning_rate": 2e-05,
|
224 |
+
"loss": 0.0074,
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
+
"eval_accuracy": 0.9022556390977443,
|
230 |
+
"eval_f1": 0.8805765113084321,
|
231 |
+
"eval_loss": 0.6789939403533936,
|
232 |
+
"eval_precision": 0.8857796167247387,
|
233 |
+
"eval_recall": 0.8758410620112748,
|
234 |
+
"eval_runtime": 1.6567,
|
235 |
+
"eval_samples_per_second": 240.838,
|
236 |
+
"eval_steps_per_second": 30.18,
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
+
"grad_norm": 0.0025616472121328115,
|
242 |
"learning_rate": 1.75e-05,
|
243 |
+
"loss": 0.0141,
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
+
"eval_accuracy": 0.8972431077694235,
|
249 |
+
"eval_f1": 0.8731122745782431,
|
250 |
+
"eval_loss": 0.6981470584869385,
|
251 |
+
"eval_precision": 0.8829705994654449,
|
252 |
+
"eval_recall": 0.864793598836152,
|
253 |
+
"eval_runtime": 1.6639,
|
254 |
+
"eval_samples_per_second": 239.794,
|
255 |
+
"eval_steps_per_second": 30.049,
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
+
"grad_norm": 0.006673410069197416,
|
261 |
"learning_rate": 1.5e-05,
|
262 |
+
"loss": 0.0034,
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
+
"eval_accuracy": 0.8972431077694235,
|
268 |
+
"eval_f1": 0.8751002084335417,
|
269 |
+
"eval_loss": 0.7144644856452942,
|
270 |
+
"eval_precision": 0.8780701754385964,
|
271 |
+
"eval_recall": 0.8722949627204946,
|
272 |
+
"eval_runtime": 1.6531,
|
273 |
+
"eval_samples_per_second": 241.366,
|
274 |
+
"eval_steps_per_second": 30.246,
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
+
"grad_norm": 0.0030696168541908264,
|
280 |
"learning_rate": 1.25e-05,
|
281 |
+
"loss": 0.0059,
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
+
"eval_accuracy": 0.899749373433584,
|
287 |
+
"eval_f1": 0.8758710801393728,
|
288 |
+
"eval_loss": 0.7303631901741028,
|
289 |
+
"eval_precision": 0.8870983228779925,
|
290 |
+
"eval_recall": 0.8665666484815421,
|
291 |
+
"eval_runtime": 1.6541,
|
292 |
+
"eval_samples_per_second": 241.215,
|
293 |
+
"eval_steps_per_second": 30.227,
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
+
"grad_norm": 0.0017388605047017336,
|
299 |
"learning_rate": 1e-05,
|
300 |
+
"loss": 0.0056,
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
+
"eval_accuracy": 0.899749373433584,
|
306 |
+
"eval_f1": 0.879667048676036,
|
307 |
+
"eval_loss": 0.7517656683921814,
|
308 |
+
"eval_precision": 0.8778361344537815,
|
309 |
+
"eval_recall": 0.8815693762502272,
|
310 |
+
"eval_runtime": 1.6536,
|
311 |
+
"eval_samples_per_second": 241.288,
|
312 |
+
"eval_steps_per_second": 30.237,
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
+
"grad_norm": 0.002333118114620447,
|
318 |
"learning_rate": 7.5e-06,
|
319 |
+
"loss": 0.0039,
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
+
"eval_accuracy": 0.9022556390977443,
|
325 |
+
"eval_f1": 0.8793019197207679,
|
326 |
+
"eval_loss": 0.7390431761741638,
|
327 |
+
"eval_precision": 0.8893184421534936,
|
328 |
+
"eval_recall": 0.8708401527550463,
|
329 |
+
"eval_runtime": 1.655,
|
330 |
+
"eval_samples_per_second": 241.08,
|
331 |
+
"eval_steps_per_second": 30.211,
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
+
"grad_norm": 0.0018157872837036848,
|
337 |
"learning_rate": 5e-06,
|
338 |
+
"loss": 0.004,
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
+
"eval_accuracy": 0.9022556390977443,
|
344 |
+
"eval_f1": 0.8799463033398397,
|
345 |
+
"eval_loss": 0.764133095741272,
|
346 |
+
"eval_precision": 0.8874803397294746,
|
347 |
+
"eval_recall": 0.8733406073831607,
|
348 |
+
"eval_runtime": 1.6667,
|
349 |
+
"eval_samples_per_second": 239.389,
|
350 |
+
"eval_steps_per_second": 29.999,
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
+
"grad_norm": 0.0015570241957902908,
|
356 |
"learning_rate": 2.5e-06,
|
357 |
+
"loss": 0.007,
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
+
"eval_accuracy": 0.9022556390977443,
|
363 |
+
"eval_f1": 0.8799463033398397,
|
364 |
+
"eval_loss": 0.7847548723220825,
|
365 |
+
"eval_precision": 0.8874803397294746,
|
366 |
+
"eval_recall": 0.8733406073831607,
|
367 |
+
"eval_runtime": 1.664,
|
368 |
+
"eval_samples_per_second": 239.788,
|
369 |
+
"eval_steps_per_second": 30.049,
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
+
"grad_norm": 0.002853752113878727,
|
375 |
"learning_rate": 0.0,
|
376 |
+
"loss": 0.0042,
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
+
"eval_accuracy": 0.9022556390977443,
|
382 |
+
"eval_f1": 0.8799463033398397,
|
383 |
+
"eval_loss": 0.790817379951477,
|
384 |
+
"eval_precision": 0.8874803397294746,
|
385 |
+
"eval_recall": 0.8733406073831607,
|
386 |
+
"eval_runtime": 1.6678,
|
387 |
+
"eval_samples_per_second": 239.236,
|
388 |
+
"eval_steps_per_second": 29.979,
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 7584162436176000.0,
|
395 |
+
"train_loss": 0.0588726386183598,
|
396 |
+
"train_runtime": 864.0501,
|
397 |
+
"train_samples_per_second": 84.208,
|
398 |
+
"train_steps_per_second": 2.824
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|