--- license: apple-amlr license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data library_name: mobileclip --- # MobileCLIP2: Improving Multi-Modal Reinforced Training MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 Featured), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari. This repository contains the **MobileCLIP2-S2** checkpoint. ![MobileCLIP2 Performance Figure](fig_accuracy_latency_v2.png) ### Highlights * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max. * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines). * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen
Samples (B) | # Params (M)
(img + txt) | Latency (ms)
(img + txt) | IN-1k Zero-Shot
Top-1 Acc. (%) | Avg. Perf. (%)
on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 | | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 | | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 | | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 | | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 | | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 | | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 | | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 | | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 | ## How to Use First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint. For programmatic downloading, if you have `huggingface_hub` installed, you can also run: ``` hf download apple/MobileCLIP2-S2 ``` Then, install [`ml-mobileclip`](https://github.com/apple/ml-mobileclip) by following the instructions in the repo. It uses an API similar to [`open_clip`'s](https://github.com/mlfoundations/open_clip). You can run inference with a code snippet like the following: ```py import torch import open_clip from PIL import Image from mobileclip.modules.common.mobileone import reparameterize_model model, _, preprocess = open_clip.create_model_and_transforms('MobileCLIP-S2', pretrained='/path/to/mobileclip2_s2.pt') tokenizer = open_clip.get_tokenizer('MobileCLIP-S2') # For inference/model exporting purposes, please reparameterize first model = reparameterize_model(model.eval()) image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0) text = tokenizer(["a diagram", "a dog", "a cat"]) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) ```