Make the repos compatible with transformers `trust_remote_code` 🤗
Browse filesYou can try it with the snippet here:
```python
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
MID = "apple/FastVLM-0.5B"
IMAGE_TOKEN_INDEX = -200 # what the model code looks for
# 1) Load
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MID,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True,
)
# 2) Build chat -> render to string (not tokens) so we can place <image> exactly
messages = [
{"role": "user", "content": "<image>\nDescribe this image in detail."}
]
rendered = tok.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
assert "<image>" in rendered, "The chat template output must contain <image> once."
pre, post = rendered.split("<image>", 1)
# 3) Tokenize the text *around* the image token (no extra specials!)
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
# 4) Splice in the IMAGE token id (-200) at the placeholder position
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
attention_mask = torch.ones_like(input_ids, device=model.device)
# 5) Preprocess image via the model's own processor
img = Image.open("test-2.jpg").convert("RGB")
px = model.get_vision_tower().image_processor(images=img, return_tensors="pt")["pixel_values"]
px = px.to(model.device, dtype=model.dtype)
# 6) Generate
with torch.no_grad():
out = model.generate(
inputs=input_ids,
attention_mask=attention_mask,
images=px,
max_new_tokens=128,
)
print(tok.decode(out[0], skip_special_tokens=True))
```
- llava_qwen.py +2234 -0
@@ -0,0 +1,2234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import re
|
20 |
+
import copy
|
21 |
+
from timm.models import create_model
|
22 |
+
from abc import ABC, abstractmethod
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn as nn
|
26 |
+
from torch import Tensor
|
27 |
+
import torch.nn.functional as F
|
28 |
+
from torch.nn.init import normal_
|
29 |
+
|
30 |
+
from transformers import CLIPImageProcessor
|
31 |
+
from transformers import AutoConfig, AutoModelForCausalLM, Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
32 |
+
|
33 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
34 |
+
from transformers.generation.utils import GenerateOutput
|
35 |
+
|
36 |
+
from functools import partial
|
37 |
+
from typing import List, Tuple, Optional, Union, Dict, Any
|
38 |
+
|
39 |
+
from timm.models import register_model
|
40 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
41 |
+
from timm.layers import DropPath, SqueezeExcite
|
42 |
+
|
43 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
44 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
45 |
+
LOGDIR = "."
|
46 |
+
# Model Constants
|
47 |
+
IGNORE_INDEX = -100
|
48 |
+
IMAGE_TOKEN_INDEX = -200
|
49 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
50 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
51 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
52 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
53 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
54 |
+
|
55 |
+
class LlavaConfig(Qwen2Config):
|
56 |
+
model_type = "llava_qwen2"
|
57 |
+
|
58 |
+
def _cfg(url="", **kwargs):
|
59 |
+
return {
|
60 |
+
"url": url,
|
61 |
+
"num_classes": 1000,
|
62 |
+
"input_size": (3, 256, 256),
|
63 |
+
"pool_size": None,
|
64 |
+
"crop_pct": 0.95,
|
65 |
+
"interpolation": "bicubic",
|
66 |
+
"mean": IMAGENET_DEFAULT_MEAN,
|
67 |
+
"std": IMAGENET_DEFAULT_STD,
|
68 |
+
"classifier": "head",
|
69 |
+
**kwargs,
|
70 |
+
}
|
71 |
+
|
72 |
+
|
73 |
+
default_cfgs = {
|
74 |
+
"fastvit_t": _cfg(crop_pct=0.9),
|
75 |
+
"fastvit_s": _cfg(crop_pct=0.9),
|
76 |
+
"fastvit_m": _cfg(crop_pct=0.95),
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
class SEBlock(nn.Module):
|
81 |
+
"""Squeeze and Excite module.
|
82 |
+
|
83 |
+
Pytorch implementation of `Squeeze-and-Excitation Networks` -
|
84 |
+
https://arxiv.org/pdf/1709.01507.pdf
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, in_channels: int, rd_ratio: float = 0.0625) -> None:
|
88 |
+
"""Construct a Squeeze and Excite Module.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
in_channels: Number of input channels.
|
92 |
+
rd_ratio: Input channel reduction ratio.
|
93 |
+
"""
|
94 |
+
super(SEBlock, self).__init__()
|
95 |
+
self.reduce = nn.Conv2d(
|
96 |
+
in_channels=in_channels,
|
97 |
+
out_channels=int(in_channels * rd_ratio),
|
98 |
+
kernel_size=1,
|
99 |
+
stride=1,
|
100 |
+
bias=True,
|
101 |
+
)
|
102 |
+
self.expand = nn.Conv2d(
|
103 |
+
in_channels=int(in_channels * rd_ratio),
|
104 |
+
out_channels=in_channels,
|
105 |
+
kernel_size=1,
|
106 |
+
stride=1,
|
107 |
+
bias=True,
|
108 |
+
)
|
109 |
+
|
110 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
111 |
+
"""Apply forward pass."""
|
112 |
+
b, c, h, w = inputs.size()
|
113 |
+
# x = F.avg_pool2d(inputs, kernel_size=[h, w])
|
114 |
+
x = F.avg_pool2d(inputs, kernel_size=[16, 16])
|
115 |
+
x = self.reduce(x)
|
116 |
+
x = F.relu(x)
|
117 |
+
x = self.expand(x)
|
118 |
+
x = torch.sigmoid(x)
|
119 |
+
x = x.view(-1, c, 1, 1)
|
120 |
+
return inputs * x
|
121 |
+
|
122 |
+
|
123 |
+
class MobileOneBlock(nn.Module):
|
124 |
+
"""MobileOne building block.
|
125 |
+
|
126 |
+
This block has a multi-branched architecture at train-time
|
127 |
+
and plain-CNN style architecture at inference time
|
128 |
+
For more details, please refer to our paper:
|
129 |
+
`An Improved One millisecond Mobile Backbone` -
|
130 |
+
https://arxiv.org/pdf/2206.04040.pdf
|
131 |
+
"""
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
in_channels: int,
|
136 |
+
out_channels: int,
|
137 |
+
kernel_size: int,
|
138 |
+
stride: int = 1,
|
139 |
+
padding: int = 0,
|
140 |
+
dilation: int = 1,
|
141 |
+
groups: int = 1,
|
142 |
+
inference_mode: bool = False,
|
143 |
+
use_se: bool = False,
|
144 |
+
use_act: bool = True,
|
145 |
+
use_scale_branch: bool = True,
|
146 |
+
num_conv_branches: int = 1,
|
147 |
+
activation: nn.Module = nn.GELU(),
|
148 |
+
) -> None:
|
149 |
+
"""Construct a MobileOneBlock module.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
in_channels: Number of channels in the input.
|
153 |
+
out_channels: Number of channels produced by the block.
|
154 |
+
kernel_size: Size of the convolution kernel.
|
155 |
+
stride: Stride size.
|
156 |
+
padding: Zero-padding size.
|
157 |
+
dilation: Kernel dilation factor.
|
158 |
+
groups: Group number.
|
159 |
+
inference_mode: If True, instantiates model in inference mode.
|
160 |
+
use_se: Whether to use SE-ReLU activations.
|
161 |
+
use_act: Whether to use activation. Default: ``True``
|
162 |
+
use_scale_branch: Whether to use scale branch. Default: ``True``
|
163 |
+
num_conv_branches: Number of linear conv branches.
|
164 |
+
"""
|
165 |
+
super(MobileOneBlock, self).__init__()
|
166 |
+
self.inference_mode = inference_mode
|
167 |
+
self.groups = groups
|
168 |
+
self.stride = stride
|
169 |
+
self.padding = padding
|
170 |
+
self.dilation = dilation
|
171 |
+
self.kernel_size = kernel_size
|
172 |
+
self.in_channels = in_channels
|
173 |
+
self.out_channels = out_channels
|
174 |
+
self.num_conv_branches = num_conv_branches
|
175 |
+
|
176 |
+
# Check if SE-ReLU is requested
|
177 |
+
if use_se:
|
178 |
+
self.se = SEBlock(out_channels)
|
179 |
+
else:
|
180 |
+
self.se = nn.Identity()
|
181 |
+
|
182 |
+
if use_act:
|
183 |
+
self.activation = activation
|
184 |
+
else:
|
185 |
+
self.activation = nn.Identity()
|
186 |
+
|
187 |
+
if inference_mode:
|
188 |
+
self.reparam_conv = nn.Conv2d(
|
189 |
+
in_channels=in_channels,
|
190 |
+
out_channels=out_channels,
|
191 |
+
kernel_size=kernel_size,
|
192 |
+
stride=stride,
|
193 |
+
padding=padding,
|
194 |
+
dilation=dilation,
|
195 |
+
groups=groups,
|
196 |
+
bias=True,
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
# Re-parameterizable skip connection
|
200 |
+
# Fallback, sometimes batchnorm tensors
|
201 |
+
# do not get instantiated correctly on some processes
|
202 |
+
# when using deepspeed + accelerate
|
203 |
+
norm_layer = nn.BatchNorm2d(num_features=in_channels)
|
204 |
+
if norm_layer.weight.shape[0] == 0:
|
205 |
+
norm_layer.weight = nn.Parameter(torch.zeros(in_channels))
|
206 |
+
if norm_layer.bias.shape[0] == 0:
|
207 |
+
norm_layer.bias = nn.Parameter(torch.zeros(in_channels))
|
208 |
+
|
209 |
+
self.rbr_skip = (
|
210 |
+
norm_layer
|
211 |
+
if out_channels == in_channels and stride == 1
|
212 |
+
else None
|
213 |
+
)
|
214 |
+
|
215 |
+
# Re-parameterizable conv branches
|
216 |
+
if num_conv_branches > 0:
|
217 |
+
rbr_conv = list()
|
218 |
+
for _ in range(self.num_conv_branches):
|
219 |
+
rbr_conv.append(
|
220 |
+
self._conv_bn(kernel_size=kernel_size, padding=padding)
|
221 |
+
)
|
222 |
+
self.rbr_conv = nn.ModuleList(rbr_conv)
|
223 |
+
else:
|
224 |
+
self.rbr_conv = None
|
225 |
+
|
226 |
+
# Re-parameterizable scale branch
|
227 |
+
self.rbr_scale = None
|
228 |
+
if not isinstance(kernel_size, int):
|
229 |
+
kernel_size = kernel_size[0]
|
230 |
+
if (kernel_size > 1) and use_scale_branch:
|
231 |
+
self.rbr_scale = self._conv_bn(kernel_size=1, padding=0)
|
232 |
+
|
233 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
234 |
+
"""Apply forward pass."""
|
235 |
+
# Inference mode forward pass.
|
236 |
+
if self.inference_mode:
|
237 |
+
return self.activation(self.se(self.reparam_conv(x)))
|
238 |
+
|
239 |
+
# Multi-branched train-time forward pass.
|
240 |
+
# Skip branch output
|
241 |
+
identity_out = 0
|
242 |
+
if self.rbr_skip is not None:
|
243 |
+
identity_out = self.rbr_skip(x)
|
244 |
+
|
245 |
+
# Scale branch output
|
246 |
+
scale_out = 0
|
247 |
+
if self.rbr_scale is not None:
|
248 |
+
scale_out = self.rbr_scale(x)
|
249 |
+
|
250 |
+
# Other branches
|
251 |
+
out = scale_out + identity_out
|
252 |
+
if self.rbr_conv is not None:
|
253 |
+
for ix in range(self.num_conv_branches):
|
254 |
+
out += self.rbr_conv[ix](x)
|
255 |
+
|
256 |
+
return self.activation(self.se(out))
|
257 |
+
|
258 |
+
def reparameterize(self):
|
259 |
+
"""Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
|
260 |
+
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
|
261 |
+
architecture used at training time to obtain a plain CNN-like structure
|
262 |
+
for inference.
|
263 |
+
"""
|
264 |
+
if self.inference_mode:
|
265 |
+
return
|
266 |
+
kernel, bias = self._get_kernel_bias()
|
267 |
+
self.reparam_conv = nn.Conv2d(
|
268 |
+
in_channels=self.in_channels,
|
269 |
+
out_channels=self.out_channels,
|
270 |
+
kernel_size=self.kernel_size,
|
271 |
+
stride=self.stride,
|
272 |
+
padding=self.padding,
|
273 |
+
dilation=self.dilation,
|
274 |
+
groups=self.groups,
|
275 |
+
bias=True,
|
276 |
+
)
|
277 |
+
self.reparam_conv.weight.data = kernel
|
278 |
+
self.reparam_conv.bias.data = bias
|
279 |
+
|
280 |
+
# Delete un-used branches
|
281 |
+
self.__delattr__("rbr_conv")
|
282 |
+
self.__delattr__("rbr_scale")
|
283 |
+
if hasattr(self, "rbr_skip"):
|
284 |
+
self.__delattr__("rbr_skip")
|
285 |
+
|
286 |
+
self.inference_mode = True
|
287 |
+
|
288 |
+
def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
|
289 |
+
"""Method to obtain re-parameterized kernel and bias.
|
290 |
+
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
Tuple of (kernel, bias) after fusing branches.
|
294 |
+
"""
|
295 |
+
# get weights and bias of scale branch
|
296 |
+
kernel_scale = 0
|
297 |
+
bias_scale = 0
|
298 |
+
if self.rbr_scale is not None:
|
299 |
+
kernel_scale, bias_scale = self._fuse_bn_tensor(self.rbr_scale)
|
300 |
+
# Pad scale branch kernel to match conv branch kernel size.
|
301 |
+
pad = self.kernel_size // 2
|
302 |
+
kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad])
|
303 |
+
|
304 |
+
# get weights and bias of skip branch
|
305 |
+
kernel_identity = 0
|
306 |
+
bias_identity = 0
|
307 |
+
if self.rbr_skip is not None:
|
308 |
+
kernel_identity, bias_identity = self._fuse_bn_tensor(self.rbr_skip)
|
309 |
+
|
310 |
+
# get weights and bias of conv branches
|
311 |
+
kernel_conv = 0
|
312 |
+
bias_conv = 0
|
313 |
+
if self.rbr_conv is not None:
|
314 |
+
for ix in range(self.num_conv_branches):
|
315 |
+
_kernel, _bias = self._fuse_bn_tensor(self.rbr_conv[ix])
|
316 |
+
kernel_conv += _kernel
|
317 |
+
bias_conv += _bias
|
318 |
+
|
319 |
+
kernel_final = kernel_conv + kernel_scale + kernel_identity
|
320 |
+
bias_final = bias_conv + bias_scale + bias_identity
|
321 |
+
return kernel_final, bias_final
|
322 |
+
|
323 |
+
def _fuse_bn_tensor(
|
324 |
+
self, branch: Union[nn.Sequential, nn.BatchNorm2d]
|
325 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
326 |
+
"""Method to fuse batchnorm layer with preceeding conv layer.
|
327 |
+
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95
|
328 |
+
|
329 |
+
Args:
|
330 |
+
branch: Sequence of ops to be fused.
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
Tuple of (kernel, bias) after fusing batchnorm.
|
334 |
+
"""
|
335 |
+
if isinstance(branch, nn.Sequential):
|
336 |
+
kernel = branch.conv.weight
|
337 |
+
running_mean = branch.bn.running_mean
|
338 |
+
running_var = branch.bn.running_var
|
339 |
+
gamma = branch.bn.weight
|
340 |
+
beta = branch.bn.bias
|
341 |
+
eps = branch.bn.eps
|
342 |
+
else:
|
343 |
+
assert isinstance(branch, nn.BatchNorm2d)
|
344 |
+
if not hasattr(self, "id_tensor"):
|
345 |
+
input_dim = self.in_channels // self.groups
|
346 |
+
|
347 |
+
kernel_size = self.kernel_size
|
348 |
+
if isinstance(self.kernel_size, int):
|
349 |
+
kernel_size = (self.kernel_size, self.kernel_size)
|
350 |
+
|
351 |
+
kernel_value = torch.zeros(
|
352 |
+
(self.in_channels, input_dim, kernel_size[0], kernel_size[1]),
|
353 |
+
dtype=branch.weight.dtype,
|
354 |
+
device=branch.weight.device,
|
355 |
+
)
|
356 |
+
for i in range(self.in_channels):
|
357 |
+
kernel_value[
|
358 |
+
i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2
|
359 |
+
] = 1
|
360 |
+
self.id_tensor = kernel_value
|
361 |
+
kernel = self.id_tensor
|
362 |
+
running_mean = branch.running_mean
|
363 |
+
running_var = branch.running_var
|
364 |
+
gamma = branch.weight
|
365 |
+
beta = branch.bias
|
366 |
+
eps = branch.eps
|
367 |
+
std = (running_var + eps).sqrt()
|
368 |
+
t = (gamma / std).reshape(-1, 1, 1, 1)
|
369 |
+
return kernel * t, beta - running_mean * gamma / std
|
370 |
+
|
371 |
+
def _conv_bn(self, kernel_size: int, padding: int) -> nn.Sequential:
|
372 |
+
"""Helper method to construct conv-batchnorm layers.
|
373 |
+
|
374 |
+
Args:
|
375 |
+
kernel_size: Size of the convolution kernel.
|
376 |
+
padding: Zero-padding size.
|
377 |
+
|
378 |
+
Returns:
|
379 |
+
Conv-BN module.
|
380 |
+
"""
|
381 |
+
# Fallback, sometimes batchnorm tensors
|
382 |
+
# do not get instantiated correctly on some processes
|
383 |
+
# when using deepspeed + accelerate
|
384 |
+
norm_layer = nn.BatchNorm2d(num_features=self.out_channels)
|
385 |
+
if norm_layer.weight.shape[0] == 0:
|
386 |
+
norm_layer.weight = nn.Parameter(torch.zeros(self.out_channels))
|
387 |
+
if norm_layer.bias.shape[0] == 0:
|
388 |
+
norm_layer.bias = nn.Parameter(torch.zeros(self.out_channels))
|
389 |
+
|
390 |
+
mod_list = nn.Sequential()
|
391 |
+
mod_list.add_module(
|
392 |
+
"conv",
|
393 |
+
nn.Conv2d(
|
394 |
+
in_channels=self.in_channels,
|
395 |
+
out_channels=self.out_channels,
|
396 |
+
kernel_size=kernel_size,
|
397 |
+
stride=self.stride,
|
398 |
+
padding=padding,
|
399 |
+
groups=self.groups,
|
400 |
+
bias=False,
|
401 |
+
),
|
402 |
+
)
|
403 |
+
mod_list.add_module("bn", norm_layer)
|
404 |
+
return mod_list
|
405 |
+
|
406 |
+
|
407 |
+
class ReparamLargeKernelConv(nn.Module):
|
408 |
+
"""Building Block of RepLKNet
|
409 |
+
|
410 |
+
This class defines overparameterized large kernel conv block
|
411 |
+
introduced in `RepLKNet <https://arxiv.org/abs/2203.06717>`_
|
412 |
+
|
413 |
+
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch
|
414 |
+
"""
|
415 |
+
|
416 |
+
def __init__(
|
417 |
+
self,
|
418 |
+
in_channels: int,
|
419 |
+
out_channels: int,
|
420 |
+
kernel_size: int,
|
421 |
+
stride: int,
|
422 |
+
groups: int,
|
423 |
+
small_kernel: int,
|
424 |
+
inference_mode: bool = False,
|
425 |
+
use_se: bool = False,
|
426 |
+
activation: nn.Module = nn.GELU(),
|
427 |
+
) -> None:
|
428 |
+
"""Construct a ReparamLargeKernelConv module.
|
429 |
+
|
430 |
+
Args:
|
431 |
+
in_channels: Number of input channels.
|
432 |
+
out_channels: Number of output channels.
|
433 |
+
kernel_size: Kernel size of the large kernel conv branch.
|
434 |
+
stride: Stride size. Default: 1
|
435 |
+
groups: Group number. Default: 1
|
436 |
+
small_kernel: Kernel size of small kernel conv branch.
|
437 |
+
inference_mode: If True, instantiates model in inference mode. Default: ``False``
|
438 |
+
activation: Activation module. Default: ``nn.GELU``
|
439 |
+
"""
|
440 |
+
super(ReparamLargeKernelConv, self).__init__()
|
441 |
+
|
442 |
+
self.stride = stride
|
443 |
+
self.groups = groups
|
444 |
+
self.in_channels = in_channels
|
445 |
+
self.out_channels = out_channels
|
446 |
+
self.activation = activation
|
447 |
+
|
448 |
+
self.kernel_size = kernel_size
|
449 |
+
self.small_kernel = small_kernel
|
450 |
+
self.padding = kernel_size // 2
|
451 |
+
|
452 |
+
# Check if SE is requested
|
453 |
+
if use_se:
|
454 |
+
self.se = SqueezeExcite(out_channels, rd_ratio=0.25)
|
455 |
+
else:
|
456 |
+
self.se = nn.Identity()
|
457 |
+
|
458 |
+
if inference_mode:
|
459 |
+
self.lkb_reparam = nn.Conv2d(
|
460 |
+
in_channels=in_channels,
|
461 |
+
out_channels=out_channels,
|
462 |
+
kernel_size=kernel_size,
|
463 |
+
stride=stride,
|
464 |
+
padding=self.padding,
|
465 |
+
dilation=1,
|
466 |
+
groups=groups,
|
467 |
+
bias=True,
|
468 |
+
)
|
469 |
+
else:
|
470 |
+
self.lkb_origin = self._conv_bn(
|
471 |
+
kernel_size=kernel_size, padding=self.padding
|
472 |
+
)
|
473 |
+
if small_kernel is not None:
|
474 |
+
assert (
|
475 |
+
small_kernel <= kernel_size
|
476 |
+
), "The kernel size for re-param cannot be larger than the large kernel!"
|
477 |
+
self.small_conv = self._conv_bn(
|
478 |
+
kernel_size=small_kernel, padding=small_kernel // 2
|
479 |
+
)
|
480 |
+
|
481 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
482 |
+
"""Apply forward pass."""
|
483 |
+
if hasattr(self, "lkb_reparam"):
|
484 |
+
out = self.lkb_reparam(x)
|
485 |
+
else:
|
486 |
+
out = self.lkb_origin(x)
|
487 |
+
if hasattr(self, "small_conv"):
|
488 |
+
out += self.small_conv(x)
|
489 |
+
|
490 |
+
return self.activation(self.se(out))
|
491 |
+
|
492 |
+
def get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
|
493 |
+
"""Method to obtain re-parameterized kernel and bias.
|
494 |
+
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch
|
495 |
+
|
496 |
+
Returns:
|
497 |
+
Tuple of (kernel, bias) after fusing branches.
|
498 |
+
"""
|
499 |
+
eq_k, eq_b = self._fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn)
|
500 |
+
if hasattr(self, "small_conv"):
|
501 |
+
small_k, small_b = self._fuse_bn(self.small_conv.conv, self.small_conv.bn)
|
502 |
+
eq_b += small_b
|
503 |
+
eq_k += nn.functional.pad(
|
504 |
+
small_k, [(self.kernel_size - self.small_kernel) // 2] * 4
|
505 |
+
)
|
506 |
+
return eq_k, eq_b
|
507 |
+
|
508 |
+
def reparameterize(self) -> None:
|
509 |
+
"""
|
510 |
+
Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
|
511 |
+
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
|
512 |
+
architecture used at training time to obtain a plain CNN-like structure
|
513 |
+
for inference.
|
514 |
+
"""
|
515 |
+
eq_k, eq_b = self.get_kernel_bias()
|
516 |
+
self.lkb_reparam = nn.Conv2d(
|
517 |
+
in_channels=self.in_channels,
|
518 |
+
out_channels=self.out_channels,
|
519 |
+
kernel_size=self.kernel_size,
|
520 |
+
stride=self.stride,
|
521 |
+
padding=self.padding,
|
522 |
+
dilation=self.lkb_origin.conv.dilation,
|
523 |
+
groups=self.groups,
|
524 |
+
bias=True,
|
525 |
+
)
|
526 |
+
|
527 |
+
self.lkb_reparam.weight.data = eq_k
|
528 |
+
self.lkb_reparam.bias.data = eq_b
|
529 |
+
self.__delattr__("lkb_origin")
|
530 |
+
if hasattr(self, "small_conv"):
|
531 |
+
self.__delattr__("small_conv")
|
532 |
+
|
533 |
+
@staticmethod
|
534 |
+
def _fuse_bn(
|
535 |
+
conv: torch.Tensor, bn: nn.BatchNorm2d
|
536 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
537 |
+
"""Method to fuse batchnorm layer with conv layer.
|
538 |
+
|
539 |
+
Args:
|
540 |
+
conv: Convolutional kernel weights.
|
541 |
+
bn: Batchnorm 2d layer.
|
542 |
+
|
543 |
+
Returns:
|
544 |
+
Tuple of (kernel, bias) after fusing batchnorm.
|
545 |
+
"""
|
546 |
+
kernel = conv.weight
|
547 |
+
running_mean = bn.running_mean
|
548 |
+
running_var = bn.running_var
|
549 |
+
gamma = bn.weight
|
550 |
+
beta = bn.bias
|
551 |
+
eps = bn.eps
|
552 |
+
std = (running_var + eps).sqrt()
|
553 |
+
t = (gamma / std).reshape(-1, 1, 1, 1)
|
554 |
+
return kernel * t, beta - running_mean * gamma / std
|
555 |
+
|
556 |
+
def _conv_bn(self, kernel_size: int, padding: int = 0) -> nn.Sequential:
|
557 |
+
"""Helper method to construct conv-batchnorm layers.
|
558 |
+
|
559 |
+
Args:
|
560 |
+
kernel_size: Size of the convolution kernel.
|
561 |
+
padding: Zero-padding size.
|
562 |
+
|
563 |
+
Returns:
|
564 |
+
A nn.Sequential Conv-BN module.
|
565 |
+
"""
|
566 |
+
# Fallback, sometimes batchnorm tensors
|
567 |
+
# do not get instantiated correctly on some processes
|
568 |
+
# when using deepspeed + accelerate
|
569 |
+
norm_layer = nn.BatchNorm2d(num_features=self.out_channels)
|
570 |
+
if norm_layer.weight.shape[0] == 0:
|
571 |
+
norm_layer.weight = nn.Parameter(torch.zeros(self.out_channels))
|
572 |
+
if norm_layer.bias.shape[0] == 0:
|
573 |
+
norm_layer.bias = nn.Parameter(torch.zeros(self.out_channels))
|
574 |
+
|
575 |
+
mod_list = nn.Sequential()
|
576 |
+
mod_list.add_module(
|
577 |
+
"conv",
|
578 |
+
nn.Conv2d(
|
579 |
+
in_channels=self.in_channels,
|
580 |
+
out_channels=self.out_channels,
|
581 |
+
kernel_size=kernel_size,
|
582 |
+
stride=self.stride,
|
583 |
+
padding=padding,
|
584 |
+
groups=self.groups,
|
585 |
+
bias=False,
|
586 |
+
),
|
587 |
+
)
|
588 |
+
mod_list.add_module("bn", norm_layer)
|
589 |
+
return mod_list
|
590 |
+
|
591 |
+
|
592 |
+
def convolutional_stem(
|
593 |
+
in_channels: int, out_channels: int, inference_mode: bool = False, use_scale_branch: bool = True,
|
594 |
+
) -> nn.Sequential:
|
595 |
+
"""Build convolutional stem with MobileOne blocks.
|
596 |
+
|
597 |
+
Args:
|
598 |
+
in_channels: Number of input channels.
|
599 |
+
out_channels: Number of output channels.
|
600 |
+
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
|
601 |
+
|
602 |
+
Returns:
|
603 |
+
nn.Sequential object with stem elements.
|
604 |
+
"""
|
605 |
+
return nn.Sequential(
|
606 |
+
MobileOneBlock(
|
607 |
+
in_channels=in_channels,
|
608 |
+
out_channels=out_channels,
|
609 |
+
kernel_size=3,
|
610 |
+
stride=2,
|
611 |
+
padding=1,
|
612 |
+
groups=1,
|
613 |
+
inference_mode=inference_mode,
|
614 |
+
use_se=False,
|
615 |
+
num_conv_branches=1,
|
616 |
+
use_scale_branch=use_scale_branch
|
617 |
+
),
|
618 |
+
MobileOneBlock(
|
619 |
+
in_channels=out_channels,
|
620 |
+
out_channels=out_channels,
|
621 |
+
kernel_size=3,
|
622 |
+
stride=2,
|
623 |
+
padding=1,
|
624 |
+
groups=out_channels,
|
625 |
+
inference_mode=inference_mode,
|
626 |
+
use_se=False,
|
627 |
+
num_conv_branches=1,
|
628 |
+
use_scale_branch=use_scale_branch
|
629 |
+
),
|
630 |
+
MobileOneBlock(
|
631 |
+
in_channels=out_channels,
|
632 |
+
out_channels=out_channels,
|
633 |
+
kernel_size=1,
|
634 |
+
stride=1,
|
635 |
+
padding=0,
|
636 |
+
groups=1,
|
637 |
+
inference_mode=inference_mode,
|
638 |
+
use_se=False,
|
639 |
+
num_conv_branches=1,
|
640 |
+
use_scale_branch=use_scale_branch
|
641 |
+
),
|
642 |
+
)
|
643 |
+
|
644 |
+
|
645 |
+
class LayerNormChannel(nn.Module):
|
646 |
+
"""
|
647 |
+
LayerNorm only for Channel Dimension.
|
648 |
+
Input: tensor in shape [B, C, H, W]
|
649 |
+
"""
|
650 |
+
def __init__(self, num_features, eps=1e-05) -> None:
|
651 |
+
super().__init__()
|
652 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
653 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
654 |
+
self.eps = eps
|
655 |
+
|
656 |
+
def forward(self, x) -> torch.Tensor:
|
657 |
+
u = x.mean(1, keepdim=True)
|
658 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
659 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
660 |
+
x = self.weight.unsqueeze(-1).unsqueeze(-1) * x \
|
661 |
+
+ self.bias.unsqueeze(-1).unsqueeze(-1)
|
662 |
+
return x
|
663 |
+
|
664 |
+
|
665 |
+
class MHSA(nn.Module):
|
666 |
+
"""Multi-headed Self Attention module.
|
667 |
+
|
668 |
+
Source modified from:
|
669 |
+
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
670 |
+
"""
|
671 |
+
|
672 |
+
def __init__(
|
673 |
+
self,
|
674 |
+
dim: int,
|
675 |
+
head_dim: int = 32,
|
676 |
+
qkv_bias: bool = False,
|
677 |
+
attn_drop: float = 0.0,
|
678 |
+
proj_drop: float = 0.0,
|
679 |
+
) -> None:
|
680 |
+
"""Build MHSA module that can handle 3D or 4D input tensors.
|
681 |
+
|
682 |
+
Args:
|
683 |
+
dim: Number of embedding dimensions.
|
684 |
+
head_dim: Number of hidden dimensions per head. Default: ``32``
|
685 |
+
qkv_bias: Use bias or not. Default: ``False``
|
686 |
+
attn_drop: Dropout rate for attention tensor.
|
687 |
+
proj_drop: Dropout rate for projection tensor.
|
688 |
+
"""
|
689 |
+
super().__init__()
|
690 |
+
assert dim % head_dim == 0, "dim should be divisible by head_dim"
|
691 |
+
self.head_dim = head_dim
|
692 |
+
self.num_heads = dim // head_dim
|
693 |
+
self.scale = head_dim**-0.5
|
694 |
+
|
695 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
696 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
697 |
+
self.proj = nn.Linear(dim, dim)
|
698 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
699 |
+
|
700 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
701 |
+
shape = x.shape
|
702 |
+
B, C, H, W = shape
|
703 |
+
N = H * W
|
704 |
+
if len(shape) == 4:
|
705 |
+
x = torch.flatten(x, start_dim=2).transpose(-2, -1) # (B, N, C)
|
706 |
+
qkv = (
|
707 |
+
self.qkv(x)
|
708 |
+
.reshape(B, N, 3, self.num_heads, self.head_dim)
|
709 |
+
.permute(2, 0, 3, 1, 4)
|
710 |
+
)
|
711 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
712 |
+
|
713 |
+
# trick here to make [email protected] more stable
|
714 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
715 |
+
attn = attn.softmax(dim=-1)
|
716 |
+
attn = self.attn_drop(attn)
|
717 |
+
|
718 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
719 |
+
x = self.proj(x)
|
720 |
+
x = self.proj_drop(x)
|
721 |
+
if len(shape) == 4:
|
722 |
+
x = x.transpose(-2, -1).reshape(B, C, H, W)
|
723 |
+
|
724 |
+
return x
|
725 |
+
|
726 |
+
|
727 |
+
class PatchEmbed(nn.Module):
|
728 |
+
"""Convolutional patch embedding layer."""
|
729 |
+
|
730 |
+
def __init__(
|
731 |
+
self,
|
732 |
+
patch_size: int,
|
733 |
+
stride: int,
|
734 |
+
in_channels: int,
|
735 |
+
embed_dim: int,
|
736 |
+
inference_mode: bool = False,
|
737 |
+
use_se: bool = False,
|
738 |
+
) -> None:
|
739 |
+
"""Build patch embedding layer.
|
740 |
+
|
741 |
+
Args:
|
742 |
+
patch_size: Patch size for embedding computation.
|
743 |
+
stride: Stride for convolutional embedding layer.
|
744 |
+
in_channels: Number of channels of input tensor.
|
745 |
+
embed_dim: Number of embedding dimensions.
|
746 |
+
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
|
747 |
+
use_se: If ``True`` SE block will be used.
|
748 |
+
"""
|
749 |
+
super().__init__()
|
750 |
+
block = list()
|
751 |
+
block.append(
|
752 |
+
ReparamLargeKernelConv(
|
753 |
+
in_channels=in_channels,
|
754 |
+
out_channels=embed_dim,
|
755 |
+
kernel_size=patch_size,
|
756 |
+
stride=stride,
|
757 |
+
groups=in_channels,
|
758 |
+
small_kernel=3,
|
759 |
+
inference_mode=inference_mode,
|
760 |
+
use_se=use_se,
|
761 |
+
)
|
762 |
+
)
|
763 |
+
block.append(
|
764 |
+
MobileOneBlock(
|
765 |
+
in_channels=embed_dim,
|
766 |
+
out_channels=embed_dim,
|
767 |
+
kernel_size=1,
|
768 |
+
stride=1,
|
769 |
+
padding=0,
|
770 |
+
groups=1,
|
771 |
+
inference_mode=inference_mode,
|
772 |
+
use_se=False,
|
773 |
+
num_conv_branches=1,
|
774 |
+
)
|
775 |
+
)
|
776 |
+
self.proj = nn.Sequential(*block)
|
777 |
+
|
778 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
779 |
+
x = self.proj(x)
|
780 |
+
return x
|
781 |
+
|
782 |
+
|
783 |
+
class RepMixer(nn.Module):
|
784 |
+
"""Reparameterizable token mixer.
|
785 |
+
|
786 |
+
For more details, please refer to our paper:
|
787 |
+
`FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization <https://arxiv.org/pdf/2303.14189.pdf>`_
|
788 |
+
"""
|
789 |
+
|
790 |
+
def __init__(
|
791 |
+
self,
|
792 |
+
dim,
|
793 |
+
kernel_size=3,
|
794 |
+
use_layer_scale=True,
|
795 |
+
layer_scale_init_value=1e-5,
|
796 |
+
inference_mode: bool = False,
|
797 |
+
):
|
798 |
+
"""Build RepMixer Module.
|
799 |
+
|
800 |
+
Args:
|
801 |
+
dim: Input feature map dimension. :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, H, W)`.
|
802 |
+
kernel_size: Kernel size for spatial mixing. Default: 3
|
803 |
+
use_layer_scale: If True, learnable layer scale is used. Default: ``True``
|
804 |
+
layer_scale_init_value: Initial value for layer scale. Default: 1e-5
|
805 |
+
inference_mode: If True, instantiates model in inference mode. Default: ``False``
|
806 |
+
"""
|
807 |
+
super().__init__()
|
808 |
+
self.dim = dim
|
809 |
+
self.kernel_size = kernel_size
|
810 |
+
self.inference_mode = inference_mode
|
811 |
+
|
812 |
+
if inference_mode:
|
813 |
+
self.reparam_conv = nn.Conv2d(
|
814 |
+
in_channels=self.dim,
|
815 |
+
out_channels=self.dim,
|
816 |
+
kernel_size=self.kernel_size,
|
817 |
+
stride=1,
|
818 |
+
padding=self.kernel_size // 2,
|
819 |
+
groups=self.dim,
|
820 |
+
bias=True,
|
821 |
+
)
|
822 |
+
else:
|
823 |
+
self.norm = MobileOneBlock(
|
824 |
+
dim,
|
825 |
+
dim,
|
826 |
+
kernel_size,
|
827 |
+
padding=kernel_size // 2,
|
828 |
+
groups=dim,
|
829 |
+
use_act=False,
|
830 |
+
use_scale_branch=False,
|
831 |
+
num_conv_branches=0,
|
832 |
+
)
|
833 |
+
self.mixer = MobileOneBlock(
|
834 |
+
dim,
|
835 |
+
dim,
|
836 |
+
kernel_size,
|
837 |
+
padding=kernel_size // 2,
|
838 |
+
groups=dim,
|
839 |
+
use_act=False,
|
840 |
+
)
|
841 |
+
self.use_layer_scale = use_layer_scale
|
842 |
+
if use_layer_scale:
|
843 |
+
self.layer_scale = nn.Parameter(
|
844 |
+
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
|
845 |
+
)
|
846 |
+
|
847 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
848 |
+
if hasattr(self, "reparam_conv"):
|
849 |
+
x = self.reparam_conv(x)
|
850 |
+
return x
|
851 |
+
else:
|
852 |
+
if self.use_layer_scale:
|
853 |
+
x = x + self.layer_scale * (self.mixer(x) - self.norm(x))
|
854 |
+
else:
|
855 |
+
x = x + self.mixer(x) - self.norm(x)
|
856 |
+
return x
|
857 |
+
|
858 |
+
def reparameterize(self) -> None:
|
859 |
+
"""Reparameterize mixer and norm into a single
|
860 |
+
convolutional layer for efficient inference.
|
861 |
+
"""
|
862 |
+
if self.inference_mode:
|
863 |
+
return
|
864 |
+
|
865 |
+
self.mixer.reparameterize()
|
866 |
+
self.norm.reparameterize()
|
867 |
+
|
868 |
+
if self.use_layer_scale:
|
869 |
+
w = self.mixer.id_tensor + self.layer_scale.unsqueeze(-1) * (
|
870 |
+
self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight
|
871 |
+
)
|
872 |
+
b = torch.squeeze(self.layer_scale) * (
|
873 |
+
self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias
|
874 |
+
)
|
875 |
+
else:
|
876 |
+
w = (
|
877 |
+
self.mixer.id_tensor
|
878 |
+
+ self.mixer.reparam_conv.weight
|
879 |
+
- self.norm.reparam_conv.weight
|
880 |
+
)
|
881 |
+
b = self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias
|
882 |
+
|
883 |
+
self.reparam_conv = nn.Conv2d(
|
884 |
+
in_channels=self.dim,
|
885 |
+
out_channels=self.dim,
|
886 |
+
kernel_size=self.kernel_size,
|
887 |
+
stride=1,
|
888 |
+
padding=self.kernel_size // 2,
|
889 |
+
groups=self.dim,
|
890 |
+
bias=True,
|
891 |
+
)
|
892 |
+
self.reparam_conv.weight.data = w
|
893 |
+
self.reparam_conv.bias.data = b
|
894 |
+
|
895 |
+
self.__delattr__("mixer")
|
896 |
+
self.__delattr__("norm")
|
897 |
+
if self.use_layer_scale:
|
898 |
+
self.__delattr__("layer_scale")
|
899 |
+
|
900 |
+
|
901 |
+
class ConvFFN(nn.Module):
|
902 |
+
"""Convolutional FFN Module."""
|
903 |
+
|
904 |
+
def __init__(
|
905 |
+
self,
|
906 |
+
in_channels: int,
|
907 |
+
hidden_channels: Optional[int] = None,
|
908 |
+
out_channels: Optional[int] = None,
|
909 |
+
act_layer: nn.Module = nn.GELU,
|
910 |
+
drop: float = 0.0,
|
911 |
+
) -> None:
|
912 |
+
"""Build convolutional FFN module.
|
913 |
+
|
914 |
+
Args:
|
915 |
+
in_channels: Number of input channels.
|
916 |
+
hidden_channels: Number of channels after expansion. Default: None
|
917 |
+
out_channels: Number of output channels. Default: None
|
918 |
+
act_layer: Activation layer. Default: ``GELU``
|
919 |
+
drop: Dropout rate. Default: ``0.0``.
|
920 |
+
"""
|
921 |
+
super().__init__()
|
922 |
+
out_channels = out_channels or in_channels
|
923 |
+
hidden_channels = hidden_channels or in_channels
|
924 |
+
self.conv = nn.Sequential()
|
925 |
+
self.conv.add_module(
|
926 |
+
"conv",
|
927 |
+
nn.Conv2d(
|
928 |
+
in_channels=in_channels,
|
929 |
+
out_channels=out_channels,
|
930 |
+
kernel_size=7,
|
931 |
+
padding=3,
|
932 |
+
groups=in_channels,
|
933 |
+
bias=False,
|
934 |
+
),
|
935 |
+
)
|
936 |
+
|
937 |
+
# Fallback, sometimes batchnorm tensors
|
938 |
+
# do not get instantiated correctly on some processes
|
939 |
+
# when using deepspeed + accelerate
|
940 |
+
norm_layer = nn.BatchNorm2d(num_features=out_channels)
|
941 |
+
if norm_layer.weight.shape[0] == 0:
|
942 |
+
norm_layer.weight = nn.Parameter(torch.zeros(out_channels))
|
943 |
+
if norm_layer.bias.shape[0] == 0:
|
944 |
+
norm_layer.bias = nn.Parameter(torch.zeros(out_channels))
|
945 |
+
|
946 |
+
self.conv.add_module("bn", norm_layer)
|
947 |
+
self.fc1 = nn.Conv2d(in_channels, hidden_channels, kernel_size=1)
|
948 |
+
self.act = act_layer()
|
949 |
+
self.fc2 = nn.Conv2d(hidden_channels, out_channels, kernel_size=1)
|
950 |
+
self.drop = nn.Dropout(drop)
|
951 |
+
self.apply(self._init_weights)
|
952 |
+
|
953 |
+
def _init_weights(self, m: nn.Module) -> None:
|
954 |
+
if isinstance(m, nn.Conv2d):
|
955 |
+
normal_(m.weight, std=0.02)
|
956 |
+
if m.bias is not None:
|
957 |
+
nn.init.constant_(m.bias, 0)
|
958 |
+
|
959 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
960 |
+
x = self.conv(x)
|
961 |
+
x = self.fc1(x)
|
962 |
+
x = self.act(x)
|
963 |
+
x = self.drop(x)
|
964 |
+
x = self.fc2(x)
|
965 |
+
x = self.drop(x)
|
966 |
+
return x
|
967 |
+
|
968 |
+
|
969 |
+
class RepCPE(nn.Module):
|
970 |
+
"""Implementation of conditional positional encoding.
|
971 |
+
|
972 |
+
For more details refer to paper:
|
973 |
+
`Conditional Positional Encodings for Vision Transformers <https://arxiv.org/pdf/2102.10882.pdf>`_
|
974 |
+
|
975 |
+
In our implementation, we can reparameterize this module to eliminate a skip connection.
|
976 |
+
"""
|
977 |
+
|
978 |
+
def __init__(
|
979 |
+
self,
|
980 |
+
in_channels: int,
|
981 |
+
embed_dim: int = 768,
|
982 |
+
spatial_shape: Union[int, Tuple[int, int]] = (7, 7),
|
983 |
+
inference_mode=False,
|
984 |
+
) -> None:
|
985 |
+
"""Build reparameterizable conditional positional encoding
|
986 |
+
|
987 |
+
Args:
|
988 |
+
in_channels: Number of input channels.
|
989 |
+
embed_dim: Number of embedding dimensions. Default: 768
|
990 |
+
spatial_shape: Spatial shape of kernel for positional encoding. Default: (7, 7)
|
991 |
+
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
|
992 |
+
"""
|
993 |
+
super(RepCPE, self).__init__()
|
994 |
+
if isinstance(spatial_shape, int):
|
995 |
+
spatial_shape = tuple([spatial_shape] * 2)
|
996 |
+
assert isinstance(spatial_shape, Tuple), (
|
997 |
+
f'"spatial_shape" must by a sequence or int, '
|
998 |
+
f"get {type(spatial_shape)} instead."
|
999 |
+
)
|
1000 |
+
assert len(spatial_shape) == 2, (
|
1001 |
+
f'Length of "spatial_shape" should be 2, '
|
1002 |
+
f"got {len(spatial_shape)} instead."
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
self.spatial_shape = spatial_shape
|
1006 |
+
self.embed_dim = embed_dim
|
1007 |
+
self.in_channels = in_channels
|
1008 |
+
self.groups = embed_dim
|
1009 |
+
|
1010 |
+
if inference_mode:
|
1011 |
+
self.reparam_conv = nn.Conv2d(
|
1012 |
+
in_channels=self.in_channels,
|
1013 |
+
out_channels=self.embed_dim,
|
1014 |
+
kernel_size=self.spatial_shape,
|
1015 |
+
stride=1,
|
1016 |
+
padding=int(self.spatial_shape[0] // 2),
|
1017 |
+
groups=self.embed_dim,
|
1018 |
+
bias=True,
|
1019 |
+
)
|
1020 |
+
else:
|
1021 |
+
self.pe = nn.Conv2d(
|
1022 |
+
in_channels,
|
1023 |
+
embed_dim,
|
1024 |
+
spatial_shape,
|
1025 |
+
1,
|
1026 |
+
int(spatial_shape[0] // 2),
|
1027 |
+
bias=True,
|
1028 |
+
groups=embed_dim,
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1032 |
+
if hasattr(self, "reparam_conv"):
|
1033 |
+
x = self.reparam_conv(x)
|
1034 |
+
return x
|
1035 |
+
else:
|
1036 |
+
x = self.pe(x) + x
|
1037 |
+
return x
|
1038 |
+
|
1039 |
+
def reparameterize(self) -> None:
|
1040 |
+
# Build equivalent Id tensor
|
1041 |
+
input_dim = self.in_channels // self.groups
|
1042 |
+
kernel_value = torch.zeros(
|
1043 |
+
(
|
1044 |
+
self.in_channels,
|
1045 |
+
input_dim,
|
1046 |
+
self.spatial_shape[0],
|
1047 |
+
self.spatial_shape[1],
|
1048 |
+
),
|
1049 |
+
dtype=self.pe.weight.dtype,
|
1050 |
+
device=self.pe.weight.device,
|
1051 |
+
)
|
1052 |
+
for i in range(self.in_channels):
|
1053 |
+
kernel_value[
|
1054 |
+
i,
|
1055 |
+
i % input_dim,
|
1056 |
+
self.spatial_shape[0] // 2,
|
1057 |
+
self.spatial_shape[1] // 2,
|
1058 |
+
] = 1
|
1059 |
+
id_tensor = kernel_value
|
1060 |
+
|
1061 |
+
# Reparameterize Id tensor and conv
|
1062 |
+
w_final = id_tensor + self.pe.weight
|
1063 |
+
b_final = self.pe.bias
|
1064 |
+
|
1065 |
+
# Introduce reparam conv
|
1066 |
+
self.reparam_conv = nn.Conv2d(
|
1067 |
+
in_channels=self.in_channels,
|
1068 |
+
out_channels=self.embed_dim,
|
1069 |
+
kernel_size=self.spatial_shape,
|
1070 |
+
stride=1,
|
1071 |
+
padding=int(self.spatial_shape[0] // 2),
|
1072 |
+
groups=self.embed_dim,
|
1073 |
+
bias=True,
|
1074 |
+
)
|
1075 |
+
self.reparam_conv.weight.data = w_final
|
1076 |
+
self.reparam_conv.bias.data = b_final
|
1077 |
+
|
1078 |
+
self.__delattr__("pe")
|
1079 |
+
|
1080 |
+
|
1081 |
+
class RepMixerBlock(nn.Module):
|
1082 |
+
"""Implementation of Metaformer block with RepMixer as token mixer.
|
1083 |
+
|
1084 |
+
For more details on Metaformer structure, please refer to:
|
1085 |
+
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_
|
1086 |
+
"""
|
1087 |
+
|
1088 |
+
def __init__(
|
1089 |
+
self,
|
1090 |
+
dim: int,
|
1091 |
+
kernel_size: int = 3,
|
1092 |
+
mlp_ratio: float = 4.0,
|
1093 |
+
act_layer: nn.Module = nn.GELU,
|
1094 |
+
drop: float = 0.0,
|
1095 |
+
drop_path: float = 0.0,
|
1096 |
+
use_layer_scale: bool = True,
|
1097 |
+
layer_scale_init_value: float = 1e-5,
|
1098 |
+
inference_mode: bool = False,
|
1099 |
+
):
|
1100 |
+
"""Build RepMixer Block.
|
1101 |
+
|
1102 |
+
Args:
|
1103 |
+
dim: Number of embedding dimensions.
|
1104 |
+
kernel_size: Kernel size for repmixer. Default: 3
|
1105 |
+
mlp_ratio: MLP expansion ratio. Default: 4.0
|
1106 |
+
act_layer: Activation layer. Default: ``nn.GELU``
|
1107 |
+
drop: Dropout rate. Default: 0.0
|
1108 |
+
drop_path: Drop path rate. Default: 0.0
|
1109 |
+
use_layer_scale: Flag to turn on layer scale. Default: ``True``
|
1110 |
+
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
|
1111 |
+
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
|
1112 |
+
"""
|
1113 |
+
|
1114 |
+
super().__init__()
|
1115 |
+
|
1116 |
+
self.token_mixer = RepMixer(
|
1117 |
+
dim,
|
1118 |
+
kernel_size=kernel_size,
|
1119 |
+
use_layer_scale=use_layer_scale,
|
1120 |
+
layer_scale_init_value=layer_scale_init_value,
|
1121 |
+
inference_mode=inference_mode,
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format(
|
1125 |
+
mlp_ratio
|
1126 |
+
)
|
1127 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
1128 |
+
self.convffn = ConvFFN(
|
1129 |
+
in_channels=dim,
|
1130 |
+
hidden_channels=mlp_hidden_dim,
|
1131 |
+
act_layer=act_layer,
|
1132 |
+
drop=drop,
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
# Drop Path
|
1136 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
1137 |
+
|
1138 |
+
# Layer Scale
|
1139 |
+
self.use_layer_scale = use_layer_scale
|
1140 |
+
if use_layer_scale:
|
1141 |
+
self.layer_scale = nn.Parameter(
|
1142 |
+
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
def forward(self, x):
|
1146 |
+
if self.use_layer_scale:
|
1147 |
+
x = self.token_mixer(x)
|
1148 |
+
x = x + self.drop_path(self.layer_scale * self.convffn(x))
|
1149 |
+
else:
|
1150 |
+
x = self.token_mixer(x)
|
1151 |
+
x = x + self.drop_path(self.convffn(x))
|
1152 |
+
return x
|
1153 |
+
|
1154 |
+
|
1155 |
+
class AttentionBlock(nn.Module):
|
1156 |
+
"""Implementation of metaformer block with MHSA as token mixer.
|
1157 |
+
|
1158 |
+
For more details on Metaformer structure, please refer to:
|
1159 |
+
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_
|
1160 |
+
"""
|
1161 |
+
|
1162 |
+
def __init__(
|
1163 |
+
self,
|
1164 |
+
dim: int,
|
1165 |
+
mlp_ratio: float = 4.0,
|
1166 |
+
act_layer: nn.Module = nn.GELU,
|
1167 |
+
norm_layer: nn.Module = nn.BatchNorm2d,
|
1168 |
+
drop: float = 0.0,
|
1169 |
+
drop_path: float = 0.0,
|
1170 |
+
use_layer_scale: bool = True,
|
1171 |
+
layer_scale_init_value: float = 1e-5,
|
1172 |
+
):
|
1173 |
+
"""Build Attention Block.
|
1174 |
+
|
1175 |
+
Args:
|
1176 |
+
dim: Number of embedding dimensions.
|
1177 |
+
mlp_ratio: MLP expansion ratio. Default: 4.0
|
1178 |
+
act_layer: Activation layer. Default: ``nn.GELU``
|
1179 |
+
norm_layer: Normalization layer. Default: ``nn.BatchNorm2d``
|
1180 |
+
drop: Dropout rate. Default: 0.0
|
1181 |
+
drop_path: Drop path rate. Default: 0.0
|
1182 |
+
use_layer_scale: Flag to turn on layer scale. Default: ``True``
|
1183 |
+
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
|
1184 |
+
"""
|
1185 |
+
|
1186 |
+
super().__init__()
|
1187 |
+
|
1188 |
+
# Fallback, sometimes batchnorm tensors
|
1189 |
+
# do not get instantiated correctly on some processes
|
1190 |
+
# when using deepspeed + accelerate
|
1191 |
+
norm_layer_ = norm_layer(num_features=dim)
|
1192 |
+
if norm_layer_.weight.shape[0] == 0:
|
1193 |
+
norm_layer_.weight = nn.Parameter(torch.zeros(dim))
|
1194 |
+
if norm_layer_.bias.shape[0] == 0:
|
1195 |
+
norm_layer_.bias = nn.Parameter(torch.zeros(dim))
|
1196 |
+
|
1197 |
+
self.norm = norm_layer_
|
1198 |
+
self.token_mixer = MHSA(dim=dim)
|
1199 |
+
|
1200 |
+
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format(
|
1201 |
+
mlp_ratio
|
1202 |
+
)
|
1203 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
1204 |
+
self.convffn = ConvFFN(
|
1205 |
+
in_channels=dim,
|
1206 |
+
hidden_channels=mlp_hidden_dim,
|
1207 |
+
act_layer=act_layer,
|
1208 |
+
drop=drop,
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
# Drop path
|
1212 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
1213 |
+
|
1214 |
+
# Layer Scale
|
1215 |
+
self.use_layer_scale = use_layer_scale
|
1216 |
+
if use_layer_scale:
|
1217 |
+
self.layer_scale_1 = nn.Parameter(
|
1218 |
+
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
|
1219 |
+
)
|
1220 |
+
self.layer_scale_2 = nn.Parameter(
|
1221 |
+
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
def forward(self, x):
|
1225 |
+
if self.use_layer_scale:
|
1226 |
+
x = x + self.drop_path(self.layer_scale_1 * self.token_mixer(self.norm(x)))
|
1227 |
+
x = x + self.drop_path(self.layer_scale_2 * self.convffn(x))
|
1228 |
+
else:
|
1229 |
+
x = x + self.drop_path(self.token_mixer(self.norm(x)))
|
1230 |
+
x = x + self.drop_path(self.convffn(x))
|
1231 |
+
return x
|
1232 |
+
|
1233 |
+
|
1234 |
+
def basic_blocks(
|
1235 |
+
dim: int,
|
1236 |
+
block_index: int,
|
1237 |
+
num_blocks: List[int],
|
1238 |
+
token_mixer_type: str,
|
1239 |
+
kernel_size: int = 3,
|
1240 |
+
mlp_ratio: float = 4.0,
|
1241 |
+
act_layer: nn.Module = nn.GELU,
|
1242 |
+
norm_layer: nn.Module = nn.BatchNorm2d,
|
1243 |
+
drop_rate: float = 0.0,
|
1244 |
+
drop_path_rate: float = 0.0,
|
1245 |
+
use_layer_scale: bool = True,
|
1246 |
+
layer_scale_init_value: float = 1e-5,
|
1247 |
+
inference_mode=False,
|
1248 |
+
) -> nn.Sequential:
|
1249 |
+
"""Build FastViT blocks within a stage.
|
1250 |
+
|
1251 |
+
Args:
|
1252 |
+
dim: Number of embedding dimensions.
|
1253 |
+
block_index: block index.
|
1254 |
+
num_blocks: List containing number of blocks per stage.
|
1255 |
+
token_mixer_type: Token mixer type.
|
1256 |
+
kernel_size: Kernel size for repmixer.
|
1257 |
+
mlp_ratio: MLP expansion ratio.
|
1258 |
+
act_layer: Activation layer.
|
1259 |
+
norm_layer: Normalization layer.
|
1260 |
+
drop_rate: Dropout rate.
|
1261 |
+
drop_path_rate: Drop path rate.
|
1262 |
+
use_layer_scale: Flag to turn on layer scale regularization.
|
1263 |
+
layer_scale_init_value: Layer scale value at initialization.
|
1264 |
+
inference_mode: Flag to instantiate block in inference mode.
|
1265 |
+
|
1266 |
+
Returns:
|
1267 |
+
nn.Sequential object of all the blocks within the stage.
|
1268 |
+
"""
|
1269 |
+
blocks = []
|
1270 |
+
for block_idx in range(num_blocks[block_index]):
|
1271 |
+
block_dpr = (
|
1272 |
+
drop_path_rate
|
1273 |
+
* (block_idx + sum(num_blocks[:block_index]))
|
1274 |
+
/ (sum(num_blocks) - 1)
|
1275 |
+
)
|
1276 |
+
if token_mixer_type == "repmixer":
|
1277 |
+
blocks.append(
|
1278 |
+
RepMixerBlock(
|
1279 |
+
dim,
|
1280 |
+
kernel_size=kernel_size,
|
1281 |
+
mlp_ratio=mlp_ratio,
|
1282 |
+
act_layer=act_layer,
|
1283 |
+
drop=drop_rate,
|
1284 |
+
drop_path=block_dpr,
|
1285 |
+
use_layer_scale=use_layer_scale,
|
1286 |
+
layer_scale_init_value=layer_scale_init_value,
|
1287 |
+
inference_mode=inference_mode,
|
1288 |
+
)
|
1289 |
+
)
|
1290 |
+
elif token_mixer_type == "attention":
|
1291 |
+
blocks.append(
|
1292 |
+
AttentionBlock(
|
1293 |
+
dim,
|
1294 |
+
mlp_ratio=mlp_ratio,
|
1295 |
+
act_layer=act_layer,
|
1296 |
+
norm_layer=norm_layer,
|
1297 |
+
drop=drop_rate,
|
1298 |
+
drop_path=block_dpr,
|
1299 |
+
use_layer_scale=use_layer_scale,
|
1300 |
+
layer_scale_init_value=layer_scale_init_value,
|
1301 |
+
)
|
1302 |
+
)
|
1303 |
+
else:
|
1304 |
+
raise ValueError(
|
1305 |
+
"Token mixer type: {} not supported".format(token_mixer_type)
|
1306 |
+
)
|
1307 |
+
blocks = nn.Sequential(*blocks)
|
1308 |
+
return blocks
|
1309 |
+
|
1310 |
+
|
1311 |
+
class GlobalPool2D(nn.Module):
|
1312 |
+
"""This class implements global pooling with linear projection."""
|
1313 |
+
|
1314 |
+
def __init__(self, in_dim: int, out_dim: int, *args, **kwargs) -> None:
|
1315 |
+
super().__init__()
|
1316 |
+
scale = in_dim**-0.5
|
1317 |
+
self.proj = nn.Parameter(scale * torch.randn(size=(in_dim, out_dim)))
|
1318 |
+
self.in_dim = in_dim
|
1319 |
+
self.out_dim = out_dim
|
1320 |
+
|
1321 |
+
def pool(self, x) -> Tensor:
|
1322 |
+
if x.dim() == 4:
|
1323 |
+
dims = [-2, -1]
|
1324 |
+
elif x.dim() == 5:
|
1325 |
+
dims = [-3, -2, -1]
|
1326 |
+
x = torch.mean(x, dim=dims, keepdim=False)
|
1327 |
+
return x
|
1328 |
+
|
1329 |
+
def forward(self, x: Tensor, *args, **kwargs) -> Tensor:
|
1330 |
+
# x is of shape [batch, in_dim]
|
1331 |
+
assert (
|
1332 |
+
x.dim() == 4
|
1333 |
+
), "Input should be 4-dimensional (Batch x in_dim x in_height x in_width). Got: {}".format(
|
1334 |
+
x.shape
|
1335 |
+
)
|
1336 |
+
|
1337 |
+
# [batch, in_dim, in_height, in_width] --> [batch, in_dim]
|
1338 |
+
x = self.pool(x)
|
1339 |
+
# [batch, in_dim] x [in_dim, out_dim] --> [batch, out_dim]
|
1340 |
+
x = x @ self.proj
|
1341 |
+
return x
|
1342 |
+
|
1343 |
+
|
1344 |
+
class FastViT(nn.Module):
|
1345 |
+
"""
|
1346 |
+
This class implements `FastViT architecture <https://arxiv.org/pdf/2303.14189.pdf>`_
|
1347 |
+
"""
|
1348 |
+
|
1349 |
+
def __init__(
|
1350 |
+
self,
|
1351 |
+
layers,
|
1352 |
+
token_mixers: Tuple[str, ...],
|
1353 |
+
embed_dims=None,
|
1354 |
+
mlp_ratios=None,
|
1355 |
+
downsamples=None,
|
1356 |
+
se_downsamples=None,
|
1357 |
+
repmixer_kernel_size=3,
|
1358 |
+
norm_layer: nn.Module = nn.BatchNorm2d,
|
1359 |
+
act_layer: nn.Module = nn.GELU,
|
1360 |
+
num_classes=1000,
|
1361 |
+
pos_embs=None,
|
1362 |
+
down_patch_size=7,
|
1363 |
+
down_stride=2,
|
1364 |
+
drop_rate=0.0,
|
1365 |
+
drop_path_rate=0.0,
|
1366 |
+
use_layer_scale=True,
|
1367 |
+
layer_scale_init_value=1e-5,
|
1368 |
+
init_cfg=None,
|
1369 |
+
pretrained=None,
|
1370 |
+
cls_ratio=2.0,
|
1371 |
+
inference_mode=False,
|
1372 |
+
stem_scale_branch=True,
|
1373 |
+
**kwargs,
|
1374 |
+
) -> None:
|
1375 |
+
|
1376 |
+
super().__init__()
|
1377 |
+
|
1378 |
+
self.num_classes = num_classes
|
1379 |
+
if len(layers) == 4:
|
1380 |
+
self.out_indices = [0, 2, 4, 7]
|
1381 |
+
elif len(layers) == 5:
|
1382 |
+
self.out_indices = [0, 2, 4, 7, 10]
|
1383 |
+
else:
|
1384 |
+
raise NotImplementedError("FPN is not implemented for more than 5 stages.")
|
1385 |
+
|
1386 |
+
if pos_embs is None:
|
1387 |
+
pos_embs = [None] * len(layers)
|
1388 |
+
|
1389 |
+
if se_downsamples is None:
|
1390 |
+
se_downsamples = [False] * len(layers)
|
1391 |
+
|
1392 |
+
# Convolutional stem
|
1393 |
+
self.patch_embed = convolutional_stem(3, embed_dims[0], inference_mode,
|
1394 |
+
use_scale_branch=stem_scale_branch)
|
1395 |
+
|
1396 |
+
# Build the main stages of the network architecture
|
1397 |
+
network = []
|
1398 |
+
for i in range(len(layers)):
|
1399 |
+
# Add position embeddings if requested
|
1400 |
+
if pos_embs[i] is not None:
|
1401 |
+
network.append(
|
1402 |
+
pos_embs[i](
|
1403 |
+
embed_dims[i], embed_dims[i], inference_mode=inference_mode
|
1404 |
+
)
|
1405 |
+
)
|
1406 |
+
stage = basic_blocks(
|
1407 |
+
embed_dims[i],
|
1408 |
+
i,
|
1409 |
+
layers,
|
1410 |
+
token_mixer_type=token_mixers[i],
|
1411 |
+
kernel_size=repmixer_kernel_size,
|
1412 |
+
mlp_ratio=mlp_ratios[i],
|
1413 |
+
act_layer=act_layer,
|
1414 |
+
norm_layer=norm_layer,
|
1415 |
+
drop_rate=drop_rate,
|
1416 |
+
drop_path_rate=drop_path_rate,
|
1417 |
+
use_layer_scale=use_layer_scale,
|
1418 |
+
layer_scale_init_value=layer_scale_init_value,
|
1419 |
+
inference_mode=inference_mode,
|
1420 |
+
)
|
1421 |
+
network.append(stage)
|
1422 |
+
if i >= len(layers) - 1:
|
1423 |
+
break
|
1424 |
+
|
1425 |
+
# Patch merging/downsampling between stages.
|
1426 |
+
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
|
1427 |
+
network.append(
|
1428 |
+
PatchEmbed(
|
1429 |
+
patch_size=down_patch_size,
|
1430 |
+
stride=down_stride,
|
1431 |
+
in_channels=embed_dims[i],
|
1432 |
+
embed_dim=embed_dims[i + 1],
|
1433 |
+
inference_mode=inference_mode,
|
1434 |
+
use_se=se_downsamples[i + 1],
|
1435 |
+
)
|
1436 |
+
)
|
1437 |
+
self.network = nn.ModuleList(network)
|
1438 |
+
|
1439 |
+
# Classifier head
|
1440 |
+
self.conv_exp = MobileOneBlock(
|
1441 |
+
in_channels=embed_dims[-1],
|
1442 |
+
out_channels=int(embed_dims[-1] * cls_ratio),
|
1443 |
+
kernel_size=3,
|
1444 |
+
stride=1,
|
1445 |
+
padding=1,
|
1446 |
+
groups=embed_dims[-1],
|
1447 |
+
inference_mode=inference_mode,
|
1448 |
+
use_se=True,
|
1449 |
+
num_conv_branches=1,
|
1450 |
+
)
|
1451 |
+
self.head = (
|
1452 |
+
nn.Linear(int(embed_dims[-1] * cls_ratio), num_classes)
|
1453 |
+
if num_classes > 0
|
1454 |
+
else nn.Identity()
|
1455 |
+
)
|
1456 |
+
self.apply(self.cls_init_weights)
|
1457 |
+
self.init_cfg = copy.deepcopy(init_cfg)
|
1458 |
+
|
1459 |
+
def cls_init_weights(self, m: nn.Module) -> None:
|
1460 |
+
"""Init. for classification"""
|
1461 |
+
if isinstance(m, nn.Linear):
|
1462 |
+
normal_(m.weight, std=0.02)
|
1463 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
1464 |
+
nn.init.constant_(m.bias, 0)
|
1465 |
+
|
1466 |
+
def forward_embeddings(self, x: torch.Tensor) -> torch.Tensor:
|
1467 |
+
x = self.patch_embed(x)
|
1468 |
+
return x
|
1469 |
+
|
1470 |
+
def forward_tokens(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
1471 |
+
for idx, block in enumerate(self.network):
|
1472 |
+
x = block(x)
|
1473 |
+
return x
|
1474 |
+
|
1475 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> Union[Tensor, Dict[str, Tensor]]:
|
1476 |
+
# input embedding
|
1477 |
+
x = self.forward_embeddings(x)
|
1478 |
+
# through backbone
|
1479 |
+
x = self.forward_tokens(x)
|
1480 |
+
# for image classification/embedding
|
1481 |
+
x = self.conv_exp(x)
|
1482 |
+
cls_out = self.head(x)
|
1483 |
+
|
1484 |
+
out_dict = dict()
|
1485 |
+
if kwargs.get("return_image_embeddings", False):
|
1486 |
+
out_dict.update({"logits": cls_out})
|
1487 |
+
out_dict.update({"image_embeddings": x})
|
1488 |
+
return out_dict
|
1489 |
+
else:
|
1490 |
+
return cls_out
|
1491 |
+
|
1492 |
+
|
1493 |
+
@register_model
|
1494 |
+
def fastvithd(pretrained=False, **kwargs):
|
1495 |
+
"""Instantiate FastViTHD model variant."""
|
1496 |
+
layers = [2, 12, 24, 4, 2]
|
1497 |
+
embed_dims = [96, 192, 384, 768, 1536]
|
1498 |
+
mlp_ratios = [4, 4, 4, 4, 4]
|
1499 |
+
downsamples = [True, True, True, True, True]
|
1500 |
+
pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7, 7)), partial(RepCPE, spatial_shape=(7, 7))]
|
1501 |
+
token_mixers = ("repmixer", "repmixer", "repmixer", "attention", "attention")
|
1502 |
+
model = FastViT(
|
1503 |
+
layers,
|
1504 |
+
token_mixers=token_mixers,
|
1505 |
+
embed_dims=embed_dims,
|
1506 |
+
pos_embs=pos_embs,
|
1507 |
+
mlp_ratios=mlp_ratios,
|
1508 |
+
downsamples=downsamples,
|
1509 |
+
norm_layer=LayerNormChannel,
|
1510 |
+
stem_scale_branch=False,
|
1511 |
+
inference_mode=True,
|
1512 |
+
**kwargs,
|
1513 |
+
)
|
1514 |
+
model.default_cfg = default_cfgs["fastvit_m"]
|
1515 |
+
if pretrained:
|
1516 |
+
raise ValueError("Functionality not implemented.")
|
1517 |
+
return model
|
1518 |
+
|
1519 |
+
def load_model_config(
|
1520 |
+
model_name: str,
|
1521 |
+
) -> Any:
|
1522 |
+
model_cfg = {
|
1523 |
+
"embed_dim": 768,
|
1524 |
+
"image_cfg": {
|
1525 |
+
"image_size": 1024,
|
1526 |
+
"model_name": "fastvithd",
|
1527 |
+
"embed_dim": 3072,
|
1528 |
+
"patch_size": 64
|
1529 |
+
},
|
1530 |
+
"text_cfg": {
|
1531 |
+
"context_length": 77,
|
1532 |
+
"vocab_size": 49408,
|
1533 |
+
"dim": 768,
|
1534 |
+
"ffn_multiplier_per_layer": 4.0,
|
1535 |
+
"n_heads_per_layer": 12,
|
1536 |
+
"n_transformer_layers": 12,
|
1537 |
+
"norm_layer": "layer_norm_fp32",
|
1538 |
+
"causal_masking": False,
|
1539 |
+
"model_name": "base"
|
1540 |
+
}
|
1541 |
+
}
|
1542 |
+
return model_cfg
|
1543 |
+
|
1544 |
+
|
1545 |
+
class MCi(nn.Module):
|
1546 |
+
"""
|
1547 |
+
This class implements `MCi Models <https://arxiv.org/pdf/2311.17049.pdf>`_
|
1548 |
+
"""
|
1549 |
+
|
1550 |
+
def __init__(self, model_name: str, *args, **kwargs) -> None:
|
1551 |
+
super().__init__()
|
1552 |
+
self.projection_dim = None
|
1553 |
+
if "projection_dim" in kwargs:
|
1554 |
+
self.projection_dim = kwargs.get("projection_dim")
|
1555 |
+
|
1556 |
+
# Create model
|
1557 |
+
self.model = create_model(model_name, projection_dim=self.projection_dim)
|
1558 |
+
|
1559 |
+
# Build out projection head.
|
1560 |
+
if self.projection_dim is not None:
|
1561 |
+
if hasattr(self.model, "head"):
|
1562 |
+
self.model.head = MCi._update_image_classifier(
|
1563 |
+
image_classifier=self.model.head, projection_dim=self.projection_dim
|
1564 |
+
)
|
1565 |
+
|
1566 |
+
def forward(self, x: Any, *args, **kwargs) -> Any:
|
1567 |
+
"""A forward function of the model."""
|
1568 |
+
x = self.model(x, *args, **kwargs)
|
1569 |
+
return x
|
1570 |
+
|
1571 |
+
@staticmethod
|
1572 |
+
def _get_in_feature_dimension(image_classifier: nn.Module) -> int:
|
1573 |
+
"""Return the input feature dimension to the image classification head."""
|
1574 |
+
in_features = None
|
1575 |
+
if isinstance(image_classifier, nn.Sequential):
|
1576 |
+
# Classifier that uses nn.Sequential usually has global pooling and
|
1577 |
+
# multiple linear layers. Find the first linear layer and get its
|
1578 |
+
# in_features
|
1579 |
+
for layer in image_classifier:
|
1580 |
+
if isinstance(layer, nn.Linear):
|
1581 |
+
in_features = layer.in_features
|
1582 |
+
break
|
1583 |
+
elif isinstance(image_classifier, nn.Linear):
|
1584 |
+
in_features = image_classifier.in_features
|
1585 |
+
|
1586 |
+
if in_features is None:
|
1587 |
+
raise NotImplementedError(
|
1588 |
+
f"Cannot get input feature dimension of {image_classifier}."
|
1589 |
+
)
|
1590 |
+
return in_features
|
1591 |
+
|
1592 |
+
@staticmethod
|
1593 |
+
def _update_image_classifier(
|
1594 |
+
image_classifier: nn.Module, projection_dim: int, *args, **kwargs
|
1595 |
+
) -> nn.Module:
|
1596 |
+
in_features = MCi._get_in_feature_dimension(image_classifier)
|
1597 |
+
new_img_classifier = GlobalPool2D(in_dim=in_features, out_dim=projection_dim)
|
1598 |
+
return new_img_classifier
|
1599 |
+
|
1600 |
+
|
1601 |
+
class MobileCLIPVisionTower(nn.Module):
|
1602 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
1603 |
+
super().__init__()
|
1604 |
+
|
1605 |
+
self.is_loaded = False
|
1606 |
+
self.vision_tower_name = vision_tower
|
1607 |
+
self.tune_vision_tower = getattr(args, 'unfreeze_mm_vision_tower', False)
|
1608 |
+
self.input_image_size = int(vision_tower.split("_")[-1])
|
1609 |
+
|
1610 |
+
# Delay load is disabled for now
|
1611 |
+
if not delay_load:
|
1612 |
+
self.load_model()
|
1613 |
+
elif getattr(args, 'unfreeze_mm_vision_tower', False):
|
1614 |
+
self.load_model()
|
1615 |
+
else:
|
1616 |
+
model_cfg = load_model_config(self.vision_tower_name)
|
1617 |
+
self.cfg_only = model_cfg
|
1618 |
+
|
1619 |
+
def load_model(self, device_map=None):
|
1620 |
+
if self.is_loaded:
|
1621 |
+
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
1622 |
+
return
|
1623 |
+
|
1624 |
+
# Load model config
|
1625 |
+
model_cfg = load_model_config(self.vision_tower_name)
|
1626 |
+
|
1627 |
+
# Override default image resolution
|
1628 |
+
model_cfg["image_cfg"]["image_size"] = self.input_image_size
|
1629 |
+
|
1630 |
+
self.cfg_only = model_cfg
|
1631 |
+
|
1632 |
+
# Build HF CLIPImageProcessor with MobileCLIP parameters
|
1633 |
+
self.image_processor = CLIPImageProcessor(crop_size={"height": model_cfg["image_cfg"]["image_size"],
|
1634 |
+
"width": model_cfg["image_cfg"]["image_size"]},
|
1635 |
+
image_mean=[0.0, 0.0, 0.0],
|
1636 |
+
image_std=[1.0, 1.0, 1.0],
|
1637 |
+
size={"shortest_edge": model_cfg["image_cfg"]["image_size"]})
|
1638 |
+
|
1639 |
+
# Instantiate the image encoder
|
1640 |
+
self.vision_tower = MCi(model_name=model_cfg["image_cfg"]["model_name"],
|
1641 |
+
projection_dim=model_cfg["embed_dim"])
|
1642 |
+
|
1643 |
+
if not self.tune_vision_tower:
|
1644 |
+
self.vision_tower.requires_grad_(False)
|
1645 |
+
|
1646 |
+
self.is_loaded = True
|
1647 |
+
|
1648 |
+
def feature_select(self, image_forward_outs):
|
1649 |
+
# Features from penultimate layer
|
1650 |
+
image_features = image_forward_outs["image_embeddings"]
|
1651 |
+
|
1652 |
+
# Reshape 4D tensor to 3D
|
1653 |
+
B, C, H, W = image_features.shape
|
1654 |
+
image_features = image_features.reshape(B, C, H*W)
|
1655 |
+
image_features = image_features.transpose(1, 2)
|
1656 |
+
return image_features
|
1657 |
+
|
1658 |
+
def forward(self, images):
|
1659 |
+
if self.tune_vision_tower:
|
1660 |
+
return self.forward_images(images)
|
1661 |
+
else:
|
1662 |
+
with torch.no_grad():
|
1663 |
+
return self.forward_images(images)
|
1664 |
+
|
1665 |
+
def forward_images(self, images):
|
1666 |
+
if type(images) is list:
|
1667 |
+
image_features = []
|
1668 |
+
for image in images:
|
1669 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), return_image_embeddings=True)
|
1670 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
1671 |
+
image_features.append(image_feature)
|
1672 |
+
else:
|
1673 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), return_image_embeddings=True)
|
1674 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
1675 |
+
|
1676 |
+
return image_features
|
1677 |
+
|
1678 |
+
@property
|
1679 |
+
def dummy_feature(self):
|
1680 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
1681 |
+
|
1682 |
+
@property
|
1683 |
+
def dtype(self):
|
1684 |
+
return next(self.vision_tower.parameters()).dtype
|
1685 |
+
|
1686 |
+
@property
|
1687 |
+
def device(self):
|
1688 |
+
return next(self.vision_tower.parameters()).device
|
1689 |
+
|
1690 |
+
@property
|
1691 |
+
def config(self):
|
1692 |
+
return self.cfg_only
|
1693 |
+
|
1694 |
+
@property
|
1695 |
+
def hidden_size(self):
|
1696 |
+
return self.config["image_cfg"]["embed_dim"]
|
1697 |
+
|
1698 |
+
@property
|
1699 |
+
def num_patches_per_side(self):
|
1700 |
+
return self.config["image_cfg"]["image_size"] // self.config["image_cfg"]["patch_size"]
|
1701 |
+
|
1702 |
+
@property
|
1703 |
+
def num_patches(self):
|
1704 |
+
return (self.config["image_cfg"]["image_size"] // self.config["image_cfg"]["patch_size"]) ** 2
|
1705 |
+
|
1706 |
+
class IdentityMap(nn.Module):
|
1707 |
+
def __init__(self):
|
1708 |
+
super().__init__()
|
1709 |
+
|
1710 |
+
def forward(self, x, *args, **kwargs):
|
1711 |
+
return x
|
1712 |
+
|
1713 |
+
@property
|
1714 |
+
def config(self):
|
1715 |
+
return {"mm_projector_type": 'identity'}
|
1716 |
+
|
1717 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
1718 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
1719 |
+
|
1720 |
+
if projector_type == 'linear':
|
1721 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
1722 |
+
|
1723 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
1724 |
+
if mlp_gelu_match:
|
1725 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
1726 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
1727 |
+
for _ in range(1, mlp_depth):
|
1728 |
+
modules.append(nn.GELU())
|
1729 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
1730 |
+
return nn.Sequential(*modules)
|
1731 |
+
|
1732 |
+
if projector_type == 'identity':
|
1733 |
+
return IdentityMap()
|
1734 |
+
|
1735 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
1736 |
+
|
1737 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
1738 |
+
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
|
1739 |
+
return MobileCLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
1740 |
+
|
1741 |
+
class LlavaMetaModel:
|
1742 |
+
|
1743 |
+
def __init__(self, config):
|
1744 |
+
super(LlavaMetaModel, self).__init__(config)
|
1745 |
+
|
1746 |
+
if hasattr(config, "mm_vision_tower"):
|
1747 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
1748 |
+
self.mm_projector = build_vision_projector(config)
|
1749 |
+
|
1750 |
+
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
|
1751 |
+
self.image_newline = nn.Parameter(
|
1752 |
+
torch.empty(config.hidden_size, dtype=self.dtype)
|
1753 |
+
)
|
1754 |
+
|
1755 |
+
def get_vision_tower(self):
|
1756 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
1757 |
+
if type(vision_tower) is list:
|
1758 |
+
vision_tower = vision_tower[0]
|
1759 |
+
return vision_tower
|
1760 |
+
|
1761 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
1762 |
+
vision_tower = model_args.vision_tower
|
1763 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
1764 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
1765 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
1766 |
+
mm_patch_merge_type = model_args.mm_patch_merge_type
|
1767 |
+
|
1768 |
+
self.config.mm_vision_tower = vision_tower
|
1769 |
+
|
1770 |
+
if self.get_vision_tower() is None:
|
1771 |
+
vision_tower = build_vision_tower(model_args)
|
1772 |
+
|
1773 |
+
if fsdp is not None and len(fsdp) > 0:
|
1774 |
+
self.vision_tower = [vision_tower]
|
1775 |
+
else:
|
1776 |
+
self.vision_tower = vision_tower
|
1777 |
+
else:
|
1778 |
+
if fsdp is not None and len(fsdp) > 0:
|
1779 |
+
vision_tower = self.vision_tower[0]
|
1780 |
+
else:
|
1781 |
+
vision_tower = self.vision_tower
|
1782 |
+
vision_tower.load_model()
|
1783 |
+
|
1784 |
+
self.config.use_mm_proj = True
|
1785 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
1786 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
1787 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
1788 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
1789 |
+
self.config.mm_patch_merge_type = mm_patch_merge_type
|
1790 |
+
|
1791 |
+
if getattr(self, 'mm_projector', None) is None:
|
1792 |
+
self.mm_projector = build_vision_projector(self.config)
|
1793 |
+
|
1794 |
+
if 'unpad' in mm_patch_merge_type:
|
1795 |
+
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
|
1796 |
+
self.image_newline = nn.Parameter(
|
1797 |
+
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
|
1798 |
+
)
|
1799 |
+
else:
|
1800 |
+
# In case it is frozen by LoRA
|
1801 |
+
for p in self.mm_projector.parameters():
|
1802 |
+
p.requires_grad = True
|
1803 |
+
|
1804 |
+
if pretrain_mm_mlp_adapter is not None:
|
1805 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
1806 |
+
|
1807 |
+
def get_w(weights, keyword):
|
1808 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
1809 |
+
|
1810 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
1811 |
+
|
1812 |
+
def select_best_resolution(original_size, possible_resolutions):
|
1813 |
+
"""
|
1814 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
1815 |
+
|
1816 |
+
Args:
|
1817 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
1818 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
1819 |
+
|
1820 |
+
Returns:
|
1821 |
+
tuple: The best fit resolution in the format (width, height).
|
1822 |
+
"""
|
1823 |
+
original_width, original_height = original_size
|
1824 |
+
best_fit = None
|
1825 |
+
max_effective_resolution = 0
|
1826 |
+
min_wasted_resolution = float('inf')
|
1827 |
+
|
1828 |
+
for width, height in possible_resolutions:
|
1829 |
+
scale = min(width / original_width, height / original_height)
|
1830 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
1831 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
1832 |
+
wasted_resolution = (width * height) - effective_resolution
|
1833 |
+
|
1834 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
1835 |
+
max_effective_resolution = effective_resolution
|
1836 |
+
min_wasted_resolution = wasted_resolution
|
1837 |
+
best_fit = (width, height)
|
1838 |
+
|
1839 |
+
return best_fit
|
1840 |
+
|
1841 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
1842 |
+
"""
|
1843 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
1844 |
+
|
1845 |
+
Args:
|
1846 |
+
image_size (tuple): The size of the input image in the format (width, height).
|
1847 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
1848 |
+
patch_size (int): The size of each image patch.
|
1849 |
+
|
1850 |
+
Returns:
|
1851 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
1852 |
+
"""
|
1853 |
+
import ast
|
1854 |
+
if type(grid_pinpoints) is list:
|
1855 |
+
possible_resolutions = grid_pinpoints
|
1856 |
+
else:
|
1857 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
1858 |
+
width, height = select_best_resolution(image_size, possible_resolutions)
|
1859 |
+
return width // patch_size, height // patch_size
|
1860 |
+
|
1861 |
+
class LlavaMetaForCausalLM(ABC):
|
1862 |
+
|
1863 |
+
@abstractmethod
|
1864 |
+
def get_model(self):
|
1865 |
+
pass
|
1866 |
+
|
1867 |
+
def get_vision_tower(self):
|
1868 |
+
return self.get_model().get_vision_tower()
|
1869 |
+
|
1870 |
+
def encode_images(self, images):
|
1871 |
+
image_features = self.get_model().get_vision_tower()(images)
|
1872 |
+
image_features = self.get_model().mm_projector(image_features)
|
1873 |
+
return image_features
|
1874 |
+
|
1875 |
+
def prepare_inputs_labels_for_multimodal(
|
1876 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
1877 |
+
images, image_sizes=None
|
1878 |
+
):
|
1879 |
+
vision_tower = self.get_vision_tower()
|
1880 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
1881 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
1882 |
+
|
1883 |
+
if type(images) is list or images.ndim == 5:
|
1884 |
+
if type(images) is list:
|
1885 |
+
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
|
1886 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
1887 |
+
image_features = self.encode_images(concat_images)
|
1888 |
+
split_sizes = [image.shape[0] for image in images]
|
1889 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
1890 |
+
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
|
1891 |
+
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
|
1892 |
+
if mm_patch_merge_type == 'flat':
|
1893 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
1894 |
+
elif mm_patch_merge_type.startswith('spatial'):
|
1895 |
+
new_image_features = []
|
1896 |
+
for image_idx, image_feature in enumerate(image_features):
|
1897 |
+
if image_feature.shape[0] > 1:
|
1898 |
+
base_image_feature = image_feature[0]
|
1899 |
+
image_feature = image_feature[1:]
|
1900 |
+
height = width = self.get_vision_tower().num_patches_per_side
|
1901 |
+
assert height * width == base_image_feature.shape[0]
|
1902 |
+
if image_aspect_ratio == 'anyres':
|
1903 |
+
if hasattr(self.get_vision_tower(), 's2_image_size'):
|
1904 |
+
img_size = self.get_vision_tower().s2_image_size
|
1905 |
+
elif isinstance(self.get_vision_tower().config, dict):
|
1906 |
+
img_size = self.get_vision_tower().config["image_cfg"]["image_size"]
|
1907 |
+
else:
|
1908 |
+
img_size = self.get_vision_tower().config.image_size
|
1909 |
+
|
1910 |
+
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, img_size)
|
1911 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
1912 |
+
else:
|
1913 |
+
raise NotImplementedError
|
1914 |
+
if 'unpad' in mm_patch_merge_type:
|
1915 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
1916 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
1917 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
1918 |
+
image_feature = torch.cat((
|
1919 |
+
image_feature,
|
1920 |
+
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
|
1921 |
+
), dim=-1)
|
1922 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
1923 |
+
else:
|
1924 |
+
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
1925 |
+
image_feature = image_feature.flatten(0, 3)
|
1926 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
1927 |
+
else:
|
1928 |
+
image_feature = image_feature[0]
|
1929 |
+
if 'unpad' in mm_patch_merge_type:
|
1930 |
+
image_feature = torch.cat((
|
1931 |
+
image_feature,
|
1932 |
+
self.model.image_newline[None].to(image_feature.device)
|
1933 |
+
), dim=0)
|
1934 |
+
new_image_features.append(image_feature)
|
1935 |
+
image_features = new_image_features
|
1936 |
+
else:
|
1937 |
+
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
|
1938 |
+
else:
|
1939 |
+
image_features = self.encode_images(images)
|
1940 |
+
|
1941 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
1942 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
1943 |
+
raise NotImplementedError
|
1944 |
+
|
1945 |
+
# Let's just add dummy tensors if they do not exist,
|
1946 |
+
# it is a headache to deal with None all the time.
|
1947 |
+
# But it is not ideal, and if you have a better idea,
|
1948 |
+
# please open an issue / submit a PR, thanks.
|
1949 |
+
_labels = labels
|
1950 |
+
_position_ids = position_ids
|
1951 |
+
_attention_mask = attention_mask
|
1952 |
+
if attention_mask is None:
|
1953 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
1954 |
+
else:
|
1955 |
+
attention_mask = attention_mask.bool()
|
1956 |
+
if position_ids is None:
|
1957 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
1958 |
+
if labels is None:
|
1959 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
1960 |
+
|
1961 |
+
# remove the padding using attention_mask -- FIXME
|
1962 |
+
_input_ids = input_ids
|
1963 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
1964 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
1965 |
+
|
1966 |
+
new_input_embeds = []
|
1967 |
+
new_labels = []
|
1968 |
+
cur_image_idx = 0
|
1969 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
1970 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
1971 |
+
if num_images == 0:
|
1972 |
+
cur_image_features = image_features[cur_image_idx]
|
1973 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
1974 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
1975 |
+
new_input_embeds.append(cur_input_embeds)
|
1976 |
+
new_labels.append(labels[batch_idx])
|
1977 |
+
cur_image_idx += 1
|
1978 |
+
continue
|
1979 |
+
|
1980 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
1981 |
+
cur_input_ids_noim = []
|
1982 |
+
cur_labels = labels[batch_idx]
|
1983 |
+
cur_labels_noim = []
|
1984 |
+
for i in range(len(image_token_indices) - 1):
|
1985 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
1986 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
1987 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
1988 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
1989 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
1990 |
+
cur_new_input_embeds = []
|
1991 |
+
cur_new_labels = []
|
1992 |
+
|
1993 |
+
for i in range(num_images + 1):
|
1994 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
1995 |
+
cur_new_labels.append(cur_labels_noim[i])
|
1996 |
+
if i < num_images:
|
1997 |
+
cur_image_features = image_features[cur_image_idx]
|
1998 |
+
cur_image_idx += 1
|
1999 |
+
cur_new_input_embeds.append(cur_image_features)
|
2000 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
2001 |
+
|
2002 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
2003 |
+
|
2004 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
2005 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
2006 |
+
|
2007 |
+
new_input_embeds.append(cur_new_input_embeds)
|
2008 |
+
new_labels.append(cur_new_labels)
|
2009 |
+
|
2010 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
2011 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
2012 |
+
if tokenizer_model_max_length is not None:
|
2013 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
2014 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
2015 |
+
|
2016 |
+
# Combine them
|
2017 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
2018 |
+
batch_size = len(new_input_embeds)
|
2019 |
+
|
2020 |
+
new_input_embeds_padded = []
|
2021 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
2022 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
2023 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
2024 |
+
|
2025 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
2026 |
+
cur_len = cur_new_embed.shape[0]
|
2027 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
2028 |
+
new_input_embeds_padded.append(torch.cat((
|
2029 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
2030 |
+
cur_new_embed
|
2031 |
+
), dim=0))
|
2032 |
+
if cur_len > 0:
|
2033 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
2034 |
+
attention_mask[i, -cur_len:] = True
|
2035 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
2036 |
+
else:
|
2037 |
+
new_input_embeds_padded.append(torch.cat((
|
2038 |
+
cur_new_embed,
|
2039 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
2040 |
+
), dim=0))
|
2041 |
+
if cur_len > 0:
|
2042 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
2043 |
+
attention_mask[i, :cur_len] = True
|
2044 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
2045 |
+
|
2046 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
2047 |
+
|
2048 |
+
if _labels is None:
|
2049 |
+
new_labels = None
|
2050 |
+
else:
|
2051 |
+
new_labels = new_labels_padded
|
2052 |
+
|
2053 |
+
if _attention_mask is None:
|
2054 |
+
attention_mask = None
|
2055 |
+
else:
|
2056 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
2057 |
+
|
2058 |
+
if _position_ids is None:
|
2059 |
+
position_ids = None
|
2060 |
+
|
2061 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
2062 |
+
|
2063 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
2064 |
+
if model_args.mm_use_im_patch_token:
|
2065 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
2066 |
+
self.resize_token_embeddings(len(tokenizer))
|
2067 |
+
|
2068 |
+
if model_args.mm_use_im_start_end:
|
2069 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
2070 |
+
self.resize_token_embeddings(len(tokenizer))
|
2071 |
+
|
2072 |
+
if num_new_tokens > 0:
|
2073 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
2074 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
2075 |
+
|
2076 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
2077 |
+
dim=0, keepdim=True)
|
2078 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
2079 |
+
dim=0, keepdim=True)
|
2080 |
+
|
2081 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
2082 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
2083 |
+
|
2084 |
+
if model_args.tune_mm_mlp_adapter:
|
2085 |
+
for p in self.get_input_embeddings().parameters():
|
2086 |
+
p.requires_grad = True
|
2087 |
+
for p in self.get_output_embeddings().parameters():
|
2088 |
+
p.requires_grad = False
|
2089 |
+
|
2090 |
+
if model_args.pretrain_mm_mlp_adapter:
|
2091 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
2092 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
2093 |
+
assert num_new_tokens == 2
|
2094 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
2095 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
2096 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
2097 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
2098 |
+
else:
|
2099 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
2100 |
+
elif model_args.mm_use_im_patch_token:
|
2101 |
+
if model_args.tune_mm_mlp_adapter:
|
2102 |
+
for p in self.get_input_embeddings().parameters():
|
2103 |
+
p.requires_grad = False
|
2104 |
+
for p in self.get_output_embeddings().parameters():
|
2105 |
+
p.requires_grad = False
|
2106 |
+
|
2107 |
+
|
2108 |
+
class LlavaQwen2Model(LlavaMetaModel, Qwen2Model):
|
2109 |
+
config_class = LlavaConfig
|
2110 |
+
|
2111 |
+
def __init__(self, config: Qwen2Config):
|
2112 |
+
super(LlavaQwen2Model, self).__init__(config)
|
2113 |
+
|
2114 |
+
|
2115 |
+
class LlavaQwen2ForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
2116 |
+
config_class = LlavaConfig
|
2117 |
+
|
2118 |
+
def __init__(self, config):
|
2119 |
+
super(Qwen2ForCausalLM, self).__init__(config)
|
2120 |
+
self.model = LlavaQwen2Model(config)
|
2121 |
+
# self.pretraining_tp = config.pretraining_tp
|
2122 |
+
self.vocab_size = config.vocab_size
|
2123 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
2124 |
+
|
2125 |
+
# Initialize weights and apply final processing
|
2126 |
+
self.post_init()
|
2127 |
+
|
2128 |
+
def get_model(self):
|
2129 |
+
return self.model
|
2130 |
+
|
2131 |
+
def forward(
|
2132 |
+
self,
|
2133 |
+
input_ids: torch.LongTensor = None,
|
2134 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2135 |
+
position_ids: Optional[torch.LongTensor] = None,
|
2136 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
2137 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2138 |
+
labels: Optional[torch.LongTensor] = None,
|
2139 |
+
use_cache: Optional[bool] = None,
|
2140 |
+
output_attentions: Optional[bool] = None,
|
2141 |
+
output_hidden_states: Optional[bool] = None,
|
2142 |
+
images: Optional[torch.FloatTensor] = None,
|
2143 |
+
image_sizes: Optional[List[List[int]]] = None,
|
2144 |
+
return_dict: Optional[bool] = None,
|
2145 |
+
cache_position=None,
|
2146 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
2147 |
+
|
2148 |
+
if inputs_embeds is None:
|
2149 |
+
(
|
2150 |
+
input_ids,
|
2151 |
+
position_ids,
|
2152 |
+
attention_mask,
|
2153 |
+
past_key_values,
|
2154 |
+
inputs_embeds,
|
2155 |
+
labels
|
2156 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
2157 |
+
input_ids,
|
2158 |
+
position_ids,
|
2159 |
+
attention_mask,
|
2160 |
+
past_key_values,
|
2161 |
+
labels,
|
2162 |
+
images,
|
2163 |
+
image_sizes
|
2164 |
+
)
|
2165 |
+
|
2166 |
+
return super().forward(
|
2167 |
+
input_ids=input_ids,
|
2168 |
+
attention_mask=attention_mask,
|
2169 |
+
position_ids=position_ids,
|
2170 |
+
past_key_values=past_key_values,
|
2171 |
+
inputs_embeds=inputs_embeds,
|
2172 |
+
labels=labels,
|
2173 |
+
use_cache=use_cache,
|
2174 |
+
output_attentions=output_attentions,
|
2175 |
+
output_hidden_states=output_hidden_states,
|
2176 |
+
return_dict=return_dict
|
2177 |
+
)
|
2178 |
+
|
2179 |
+
@torch.no_grad()
|
2180 |
+
def generate(
|
2181 |
+
self,
|
2182 |
+
inputs: Optional[torch.Tensor] = None,
|
2183 |
+
images: Optional[torch.Tensor] = None,
|
2184 |
+
image_sizes: Optional[torch.Tensor] = None,
|
2185 |
+
**kwargs,
|
2186 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
2187 |
+
position_ids = kwargs.pop("position_ids", None)
|
2188 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
2189 |
+
if "inputs_embeds" in kwargs:
|
2190 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
2191 |
+
|
2192 |
+
if images is not None:
|
2193 |
+
(
|
2194 |
+
inputs,
|
2195 |
+
position_ids,
|
2196 |
+
attention_mask,
|
2197 |
+
_,
|
2198 |
+
inputs_embeds,
|
2199 |
+
_
|
2200 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
2201 |
+
inputs,
|
2202 |
+
position_ids,
|
2203 |
+
attention_mask,
|
2204 |
+
None,
|
2205 |
+
None,
|
2206 |
+
images,
|
2207 |
+
image_sizes=image_sizes
|
2208 |
+
)
|
2209 |
+
else:
|
2210 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
2211 |
+
|
2212 |
+
return super().generate(
|
2213 |
+
position_ids=position_ids,
|
2214 |
+
attention_mask=attention_mask,
|
2215 |
+
inputs_embeds=inputs_embeds,
|
2216 |
+
**kwargs
|
2217 |
+
)
|
2218 |
+
|
2219 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
2220 |
+
inputs_embeds=None, **kwargs):
|
2221 |
+
images = kwargs.pop("images", None)
|
2222 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
2223 |
+
inputs = super().prepare_inputs_for_generation(
|
2224 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
2225 |
+
)
|
2226 |
+
if images is not None:
|
2227 |
+
inputs['images'] = images
|
2228 |
+
if image_sizes is not None:
|
2229 |
+
inputs['image_sizes'] = image_sizes
|
2230 |
+
return inputs
|
2231 |
+
|
2232 |
+
|
2233 |
+
AutoConfig.register("llava_qwen2", LlavaConfig)
|
2234 |
+
AutoModelForCausalLM.register(LlavaConfig, LlavaQwen2ForCausalLM)
|