File size: 4,617 Bytes
7b529ec
 
 
 
 
bc79cee
 
7b529ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc79cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b529ec
 
 
 
 
 
 
 
 
 
 
bc79cee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apple-amlr
license_name: apple-ascl
license_link: https://github.com/apple/ml-fastvlm/blob/main/LICENSE_MODEL
library_name: ml-fastvlm
tags:
- transformers
---
# FastVLM: Efficient Vision Encoding for Vision Language Models

FastVLM was introduced in
**[FastVLM: Efficient Vision Encoding for Vision Language Models](https://www.arxiv.org/abs/2412.13303). (CVPR 2025)**

[//]: # (![FastViTHD Performance](acc_vs_latency_qwen-2.png))
<p align="center">
<img src="acc_vs_latency_qwen-2.png" alt="Accuracy vs latency figure." width="400"/>
</p>

### Highlights
* We introduce FastViTHD, a novel hybrid vision encoder designed to output fewer tokens and significantly reduce encoding time for high-resolution images.  
* Our smallest variant outperforms LLaVA-OneVision-0.5B with 85x faster Time-to-First-Token (TTFT) and 3.4x smaller vision encoder.
* Our larger variants using Qwen2-7B LLM outperform recent works like Cambrian-1-8B while using a single image encoder with a 7.9x faster TTFT.


### Evaluations
| Benchmark     | FastVLM-0.5B | FastVLM-1.5B | FastVLM-7B |
|:--------------|:------------:|:------------:|:----------:|
| Ai2D          |     68.0     |     77.4     |    83.6    |
| ScienceQA     |     85.2     |     94.4     |    96.7    |
| MMMU          |     33.9     |     37.8     |    45.4    |
| VQAv2         |     76.3     |     79.1     |    80.8    |
| ChartQA       |     76.0     |     80.1     |    85.0    |
| TextVQA       |     64.5     |     70.4     |    74.9    |
| InfoVQA       |     46.4     |     59.7     |    75.8    |
| DocVQA        |     82.5     |     88.3     |    93.2    |
| OCRBench      |     63.9     |     70.2     |    73.1    |
| RealWorldQA   |     56.1     |     61.2     |    67.2    |
| SeedBench-Img |     71.0     |     74.2     |    75.4    |


### Usage Example
To run inference of PyTorch checkpoint, follow the instruction in the official repo:

Download the model
```
huggingface-cli download apple/FastVLM-1.5B
``` 

Run inference using `predict.py` from the official repo.
```bash
python predict.py --model-path /path/to/checkpoint-dir \
                  --image-file /path/to/image.png \
                  --prompt "Describe the image."
```

### Run inference with Transformers (Remote Code)
To run inference with transformers we can leverage `trust_remote_code` along with the following snippet:

```python
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
MID = "apple/FastVLM-1.5B"
IMAGE_TOKEN_INDEX = -200  # what the model code looks for
# Load
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    MID,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    device_map="auto",
    trust_remote_code=True,
)
# Build chat -> render to string (not tokens) so we can place <image> exactly
messages = [
    {"role": "user", "content": "<image>\nDescribe this image in detail."}
]
rendered = tok.apply_chat_template(
    messages, add_generation_prompt=True, tokenize=False
)
pre, post = rendered.split("<image>", 1)
# Tokenize the text *around* the image token (no extra specials!)
pre_ids  = tok(pre,  return_tensors="pt", add_special_tokens=False).input_ids
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
# Splice in the IMAGE token id (-200) at the placeholder position
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
attention_mask = torch.ones_like(input_ids, device=model.device)
# Preprocess image via the model's own processor
img = Image.open("test-2.jpg").convert("RGB")
px = model.get_vision_tower().image_processor(images=img, return_tensors="pt")["pixel_values"]
px = px.to(model.device, dtype=model.dtype)
# Generate
with torch.no_grad():
    out = model.generate(
        inputs=input_ids,
        attention_mask=attention_mask,
        images=px,
        max_new_tokens=128,
    )
print(tok.decode(out[0], skip_special_tokens=True))
```

## Citation
If you found this model useful, please cite the following paper:
```
@InProceedings{fastvlm2025,
  author = {Pavan Kumar Anasosalu Vasu, Fartash Faghri, Chun-Liang Li, Cem Koc, Nate True, Albert Antony, Gokul Santhanam, James Gabriel, Peter Grasch, Oncel Tuzel, Hadi Pouransari},
  title = {FastVLM: Efficient Vision Encoding for Vision Language Models},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2025},
}
```