File size: 4,617 Bytes
7b529ec bc79cee 7b529ec bc79cee 7b529ec bc79cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
license: apple-amlr
license_name: apple-ascl
license_link: https://github.com/apple/ml-fastvlm/blob/main/LICENSE_MODEL
library_name: ml-fastvlm
tags:
- transformers
---
# FastVLM: Efficient Vision Encoding for Vision Language Models
FastVLM was introduced in
**[FastVLM: Efficient Vision Encoding for Vision Language Models](https://www.arxiv.org/abs/2412.13303). (CVPR 2025)**
[//]: # ()
<p align="center">
<img src="acc_vs_latency_qwen-2.png" alt="Accuracy vs latency figure." width="400"/>
</p>
### Highlights
* We introduce FastViTHD, a novel hybrid vision encoder designed to output fewer tokens and significantly reduce encoding time for high-resolution images.
* Our smallest variant outperforms LLaVA-OneVision-0.5B with 85x faster Time-to-First-Token (TTFT) and 3.4x smaller vision encoder.
* Our larger variants using Qwen2-7B LLM outperform recent works like Cambrian-1-8B while using a single image encoder with a 7.9x faster TTFT.
### Evaluations
| Benchmark | FastVLM-0.5B | FastVLM-1.5B | FastVLM-7B |
|:--------------|:------------:|:------------:|:----------:|
| Ai2D | 68.0 | 77.4 | 83.6 |
| ScienceQA | 85.2 | 94.4 | 96.7 |
| MMMU | 33.9 | 37.8 | 45.4 |
| VQAv2 | 76.3 | 79.1 | 80.8 |
| ChartQA | 76.0 | 80.1 | 85.0 |
| TextVQA | 64.5 | 70.4 | 74.9 |
| InfoVQA | 46.4 | 59.7 | 75.8 |
| DocVQA | 82.5 | 88.3 | 93.2 |
| OCRBench | 63.9 | 70.2 | 73.1 |
| RealWorldQA | 56.1 | 61.2 | 67.2 |
| SeedBench-Img | 71.0 | 74.2 | 75.4 |
### Usage Example
To run inference of PyTorch checkpoint, follow the instruction in the official repo:
Download the model
```
huggingface-cli download apple/FastVLM-1.5B
```
Run inference using `predict.py` from the official repo.
```bash
python predict.py --model-path /path/to/checkpoint-dir \
--image-file /path/to/image.png \
--prompt "Describe the image."
```
### Run inference with Transformers (Remote Code)
To run inference with transformers we can leverage `trust_remote_code` along with the following snippet:
```python
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
MID = "apple/FastVLM-1.5B"
IMAGE_TOKEN_INDEX = -200 # what the model code looks for
# Load
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MID,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True,
)
# Build chat -> render to string (not tokens) so we can place <image> exactly
messages = [
{"role": "user", "content": "<image>\nDescribe this image in detail."}
]
rendered = tok.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
pre, post = rendered.split("<image>", 1)
# Tokenize the text *around* the image token (no extra specials!)
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
# Splice in the IMAGE token id (-200) at the placeholder position
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
attention_mask = torch.ones_like(input_ids, device=model.device)
# Preprocess image via the model's own processor
img = Image.open("test-2.jpg").convert("RGB")
px = model.get_vision_tower().image_processor(images=img, return_tensors="pt")["pixel_values"]
px = px.to(model.device, dtype=model.dtype)
# Generate
with torch.no_grad():
out = model.generate(
inputs=input_ids,
attention_mask=attention_mask,
images=px,
max_new_tokens=128,
)
print(tok.decode(out[0], skip_special_tokens=True))
```
## Citation
If you found this model useful, please cite the following paper:
```
@InProceedings{fastvlm2025,
author = {Pavan Kumar Anasosalu Vasu, Fartash Faghri, Chun-Liang Li, Cem Koc, Nate True, Albert Antony, Gokul Santhanam, James Gabriel, Peter Grasch, Oncel Tuzel, Hadi Pouransari},
title = {FastVLM: Efficient Vision Encoding for Vision Language Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2025},
}
``` |