Update README.md
Browse files
README.md
CHANGED
@@ -51,6 +51,61 @@ python predict.py --model-path /path/to/checkpoint-dir \
|
|
51 |
--prompt "Describe the image."
|
52 |
```
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
## Citation
|
56 |
If you found this model useful, please cite the following paper:
|
|
|
51 |
--prompt "Describe the image."
|
52 |
```
|
53 |
|
54 |
+
### Run inference with Transformers (Remote Code)
|
55 |
+
To run inference with transformers we can leverage `trust_remote_code` along with the following snippet:
|
56 |
+
|
57 |
+
```python
|
58 |
+
import torch
|
59 |
+
from PIL import Image
|
60 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
61 |
+
|
62 |
+
MID = "apple/FastVLM-0.5B"
|
63 |
+
IMAGE_TOKEN_INDEX = -200 # what the model code looks for
|
64 |
+
|
65 |
+
# Load
|
66 |
+
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(
|
68 |
+
MID,
|
69 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
70 |
+
device_map="auto",
|
71 |
+
trust_remote_code=True,
|
72 |
+
)
|
73 |
+
|
74 |
+
# Build chat -> render to string (not tokens) so we can place <image> exactly
|
75 |
+
messages = [
|
76 |
+
{"role": "user", "content": "<image>\nDescribe this image in detail."}
|
77 |
+
]
|
78 |
+
rendered = tok.apply_chat_template(
|
79 |
+
messages, add_generation_prompt=True, tokenize=False
|
80 |
+
)
|
81 |
+
|
82 |
+
pre, post = rendered.split("<image>", 1)
|
83 |
+
|
84 |
+
# Tokenize the text *around* the image token (no extra specials!)
|
85 |
+
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
|
86 |
+
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
|
87 |
+
|
88 |
+
# Splice in the IMAGE token id (-200) at the placeholder position
|
89 |
+
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
|
90 |
+
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
|
91 |
+
attention_mask = torch.ones_like(input_ids, device=model.device)
|
92 |
+
|
93 |
+
# Preprocess image via the model's own processor
|
94 |
+
img = Image.open("test-2.jpg").convert("RGB")
|
95 |
+
px = model.get_vision_tower().image_processor(images=img, return_tensors="pt")["pixel_values"]
|
96 |
+
px = px.to(model.device, dtype=model.dtype)
|
97 |
+
|
98 |
+
# Generate
|
99 |
+
with torch.no_grad():
|
100 |
+
out = model.generate(
|
101 |
+
inputs=input_ids,
|
102 |
+
attention_mask=attention_mask,
|
103 |
+
images=px,
|
104 |
+
max_new_tokens=128,
|
105 |
+
)
|
106 |
+
|
107 |
+
print(tok.decode(out[0], skip_special_tokens=True))
|
108 |
+
```
|
109 |
|
110 |
## Citation
|
111 |
If you found this model useful, please cite the following paper:
|