ppo-LunarLander-v2 / config.json
antrisole's picture
Upload PPO LunarLander-v2 trained agent
28da31d verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21d7711ab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21d7711b40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21d7711bd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21d7711c60>", "_build": "<function ActorCriticPolicy._build at 0x7f21d7711cf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f21d7711d80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f21d7711e10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21d7711ea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f21d7711f30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21d7711fc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21d7712050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21d77120e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f21d76af980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726143738756543887, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAoqrxSgMC5Z+M1uo8YDTbxnGm6LWdSOQAAgD8AAIA/AArPvPYUNLquthO55o6isxEFzrq/HC44AACAPwAAgD/a1N+9w1EmupZalTEmbS4x17DTOsqGsrAAAIA/AACAP0CXnb3safW5oveYO1MsVjhefVu6gK1euAAAgD8AAIA/ZqpWvMMpJ7pdiOi6UrN7tqwuXzvabQc6AACAPwAAgD8AzWC9w7F9ulvujTnXvHY0xDBPuyDGpbgAAIA/AACAP5rnGj2Prj26BevKO+AmrTeRgZM7dLOJNgAAgD8AAIA/mjkOvPawQ7pCI287bQ19NtWV9zrmXY26AACAPwAAgD9mxDm9UmDpuTYTojv03kQ4eUnkOq01BbgAAIA/AACAP2ZtL71SCOq5Uh8hOYaKe7Y8+vC6aBF3tQAAgD8AAIA/GsKDPdPwsT+OYiw/gSRVvhTe8rs6Jh0+AAAAAAAAAACAf0c9rkWbusxlCLoi6os2MFTdupNdHDkAAIA/AACAPzPfKjwUzJu6JlaTuaToXTXSbeG6cPbCtAAAgD8AAIA/phu2vfEzTD4cbC0+zISLvkCesD2ybUg9AAAAAAAAAABa3Jm99rRauuGAhzkJXoY07HeQOjaCn7gAAIA/AACAP8CBoj2ZZJc+Zs8cvaQdXr5GSf08dqJsPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGFC5a3Zwn+MAWyUTegDjAF0lEdAkVxnmV7hN3V9lChoBkdAZA3yc0+C9WgHTegDaAhHQJFc6+bmU4d1fZQoaAZHQGHHeeFtbcJoB03oA2gIR0CRXjLnLaEjdX2UKGgGR0BoA0vXbuc+aAdN6ANoCEdAkV+SVrylN3V9lChoBkdAZLea/ATIvWgHTegDaAhHQJFfp0r9VFR1fZQoaAZHQFEo0yxiXppoB0u1aAhHQJFhkCHRCyB1fZQoaAZHQGQybXYlIEtoB03oA2gIR0CRZXbBoEjgdX2UKGgGR0BlW08gZCOWaAdN6ANoCEdAkWhQ+Y+jd3V9lChoBkdAVTVBJI1+AmgHS89oCEdAkWlCt7rs0HV9lChoBkdAYD4O0b961WgHTegDaAhHQJFp+aa1Cw91fZQoaAZHQGTcwMH8jzJoB03oA2gIR0CRaxNi6QNkdX2UKGgGR0BiyRJd0JWvaAdN6ANoCEdAkXjs7U5MlHV9lChoBkdAYpIdUbT+emgHTegDaAhHQJF6rQPZqVR1fZQoaAZHQGOf22oegctoB03oA2gIR0CRgE1pj+aSdX2UKGgGR0Bl52q5sj3VaAdN6ANoCEdAkYltqQA+6nV9lChoBkdAZNLy5qdpZmgHTegDaAhHQJGgxF9a2Wp1fZQoaAZHQF7KStNi6QNoB03oA2gIR0CRpajHn2ZidX2UKGgGR0Bi3ffVI7NjaAdN6ANoCEdAkaXGdAgPmXV9lChoBkdAYAv38GcFyWgHTegDaAhHQJGmWn3ta6l1fZQoaAZHQGU0qM3qAz5oB03oA2gIR0CRp84axX4kdX2UKGgGR0BhipbD/EOzaAdN6ANoCEdAkak+6Ae7tnV9lChoBkdAZ26nkT6BRWgHTegDaAhHQJGrZZcLSeB1fZQoaAZHQGGKL9VFQVNoB03oA2gIR0CRr5+B6KLsdX2UKGgGR0BjbZ08vEjxaAdN6ANoCEdAkbOT5j6N2nV9lChoBkdAYyqya/h2n2gHTegDaAhHQJG07AAQxvh1fZQoaAZHQGf20MgEEDBoB03oA2gIR0CRteuCPIXCdX2UKGgGR0BkIzPdEb5uaAdN6ANoCEdAkbdXE2pAEHV9lChoBkdAZPI/IsAeaWgHTegDaAhHQJHEf7TDwYt1fZQoaAZHQF8Z94eLehxoB03oA2gIR0CRxewnH/96dX2UKGgGR0BkpihzvJA/aAdN6ANoCEdAkcncpw0fo3V9lChoBkdAYtDkRSP2f2gHTegDaAhHQJHRBG8VYZF1fZQoaAZHQHJQHrUsnRdoB00JA2gIR0CR0m16Vt4zdX2UKGgGR0Bn0dyksSTRaAdN6ANoCEdAkenJyZKFqXV9lChoBkdAX2wNMGorF2gHTegDaAhHQJHvF4s3AEd1fZQoaAZHQGaW889wFTxoB03oA2gIR0CR7zJXhfjTdX2UKGgGR0Bhr4jlgc94aAdN6ANoCEdAke+6BNEgGXV9lChoBkdAaE7JSR8tw2gHTegDaAhHQJHxBGkN4JN1fZQoaAZHQHDkYKUmlZZoB038AmgIR0CR8Rr08NhFdX2UKGgGR0Bg9oqmTC+DaAdN6ANoCEdAkfRZxm03O3V9lChoBkdAZXUt5D7ZWmgHTegDaAhHQJH4YzCUHIJ1fZQoaAZHQFvgMGX5WR1oB03oA2gIR0CR+3B6rvLHdX2UKGgGR0Bemk3wTdtVaAdN6ANoCEdAkf0vkFOfunV9lChoBkdAZXYlbeMyamgHTegDaAhHQJH+VGd7OVx1fZQoaAZHQF/5XxOLzf9oB03oA2gIR0CSDM5QxesxdX2UKGgGR0Bkx2mce8wpaAdN6ANoCEdAkg5KD5CWvHV9lChoBkdAZei6T4cm0GgHTegDaAhHQJISZgogFHJ1fZQoaAZHQGUC1zZHuqpoB03oA2gIR0CSG0IMjNY9dX2UKGgGR0BLtmapgkTpaAdL3GgIR0CSG9mvGIbgdX2UKGgGR0Bx6KSZBsyjaAdNOgNoCEdAkhyhXKbKBHV9lChoBkdAYmrdBSk0rWgHTegDaAhHQJIdM4o7V8V1fZQoaAZHQGg6Fxn3+MtoB03oA2gIR0CSM5cEvCdjdX2UKGgGR0Bjl3p8neBQaAdN6ANoCEdAkje3s9jgAXV9lChoBkdAX5Cw1R+BpmgHTegDaAhHQJI30t4A0bd1fZQoaAZHQEcIwC8vmHRoB0u0aAhHQJI5A1+AmRh1fZQoaAZHQGXd7V8Ti85oB03oA2gIR0CSOa7zCk44dX2UKGgGR0BjzrILgGbDaAdN6ANoCEdAkjnFuR9w33V9lChoBkdAZE0maYu01WgHTegDaAhHQJI9IYm9g4R1fZQoaAZHQGPiRdpqREFoB03oA2gIR0CSQS8fFJg9dX2UKGgGR0BlpI1LrX18aAdN6ANoCEdAkkRGIfr8i3V9lChoBkdAYkXbxmTTv2gHTegDaAhHQJJGAoF3Y+V1fZQoaAZHQGGW9CVrylNoB03oA2gIR0CSRy77sOXmdX2UKGgGR0Bk0TUgB91EaAdN6ANoCEdAklhVd5Y5k3V9lChoBkdAY7yDaoMrmWgHTegDaAhHQJJeYFTvRZ51fZQoaAZHQGioFEJBw/BoB03oA2gIR0CSZjy31BdEdX2UKGgGR0Bg5X5ckdFOaAdN6ANoCEdAkma4/Z/Tb3V9lChoBkdAaFHpudf9gmgHTegDaAhHQJJnT7SApa11fZQoaAZHQGIWhltj0+VoB03oA2gIR0CSa3LhJiAldX2UKGgGR0BjprF0gbIcaAdN6ANoCEdAkoLm1c+qznV9lChoBkdAYlqlLvkRz2gHTegDaAhHQJKDCU5dWyV1fZQoaAZHQGdsblJYkmhoB03oA2gIR0CShOfkWAPNdX2UKGgGR0BELWFvhqCZaAdLxGgIR0CShW9zwMH9dX2UKGgGR0BhD6+Yc/+saAdN6ANoCEdAkoXKk2xY73V9lChoBkdAZL+tYjjaPGgHTegDaAhHQJKF6FcpsoF1fZQoaAZHQGM018kUsWhoB03oA2gIR0CSiW2s7uD0dX2UKGgGR0Bfkpd0JWvKaAdN6ANoCEdAkozzFdcB2nV9lChoBkdAaG6CFK02L2gHTegDaAhHQJKPpEXtSht1fZQoaAZHQGWFhwdbPhRoB03oA2gIR0CSkUwT/Q0GdX2UKGgGR0Bj/YZflZHNaAdN6ANoCEdAkpJiKm8/U3V9lChoBkdAZzeBe5WilGgHTegDaAhHQJKgz6N2ki51fZQoaAZHQGWJOlGgBcRoB03oA2gIR0CSpwdJ8OTadX2UKGgGR0Bnb2RvFWGRaAdN6ANoCEdAkq91gpjMFHV9lChoBkdAZ0CXl8w6AGgHTegDaAhHQJKwHJCBwuN1fZQoaAZHQGcMrpzLfUFoB03oA2gIR0CSt1DTBqKxdX2UKGgGR0BwO8YyfthNaAdNiAJoCEdAksx2r4nF53V9lChoBkdAYJSsGxD9fmgHTegDaAhHQJLOYAZKnNx1fZQoaAZHQGVp/u9eyAxoB03oA2gIR0CSznx5s0pFdX2UKGgGR0Bk0iwr1/UfaAdN6ANoCEdAks/DWTX8O3V9lChoBkdAZ4ER0U47zWgHTegDaAhHQJLQIhLXcxl1fZQoaAZHQGVYjjzZpSJoB03oA2gIR0CS0GNLUTcqdX2UKGgGR0BhvwNPP9k0aAdN6ANoCEdAktB4m9g4O3V9lChoBkdAZq2mvW6K+GgHTegDaAhHQJLTQxgy/K11fZQoaAZHQGU2gc94eLhoB03oA2gIR0CS1s8Sf16FdX2UKGgGR0BogcMoc7yQaAdN6ANoCEdAktmFeSjgynV9lChoBkdAZab6+nIhhmgHTegDaAhHQJLbK58Sf191fZQoaAZHQHGewDeTFERoB01DAmgIR0CS5o/X5FgEdX2UKGgGR0BmdehXbM5faAdN6ANoCEdAkuzL04BFNXV9lChoBkdAY5NfXPJJXmgHTegDaAhHQJLyvLmp2ll1fZQoaAZHQGVlooVmBe5oB03oA2gIR0CS+ZbWVeKLdX2UKGgGR0BiEt1bJOnEaAdN6ANoCEdAkvn7YkE9uHV9lChoBkdAZdbWbPQfIWgHTegDaAhHQJMAj0163RZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}