antoniomae1234's picture
changes in flenema
2493d72 verified
import numpy as np
import torch
from torch import nn
from torch.nn.utils import weight_norm
from ..layers.wavegrad import DBlock, FiLM, UBlock, Conv1d
class Wavegrad(nn.Module):
# pylint: disable=dangerous-default-value
def __init__(self,
in_channels=80,
out_channels=1,
use_weight_norm=False,
y_conv_channels=32,
x_conv_channels=768,
dblock_out_channels=[128, 128, 256, 512],
ublock_out_channels=[512, 512, 256, 128, 128],
upsample_factors=[5, 5, 3, 2, 2],
upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8],
[1, 2, 4, 8], [1, 2, 4, 8]]):
super().__init__()
self.use_weight_norm = use_weight_norm
self.hop_len = np.prod(upsample_factors)
self.noise_level = None
self.num_steps = None
self.beta = None
self.alpha = None
self.alpha_hat = None
self.noise_level = None
self.c1 = None
self.c2 = None
self.sigma = None
# dblocks
self.y_conv = Conv1d(1, y_conv_channels, 5, padding=2)
self.dblocks = nn.ModuleList([])
ic = y_conv_channels
for oc, df in zip(dblock_out_channels, reversed(upsample_factors)):
self.dblocks.append(DBlock(ic, oc, df))
ic = oc
# film
self.film = nn.ModuleList([])
ic = y_conv_channels
for oc in reversed(ublock_out_channels):
self.film.append(FiLM(ic, oc))
ic = oc
# ublocks
self.ublocks = nn.ModuleList([])
ic = x_conv_channels
for oc, uf, ud in zip(ublock_out_channels, upsample_factors, upsample_dilations):
self.ublocks.append(UBlock(ic, oc, uf, ud))
ic = oc
self.x_conv = Conv1d(in_channels, x_conv_channels, 3, padding=1)
self.out_conv = Conv1d(oc, out_channels, 3, padding=1)
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x, spectrogram, noise_scale):
shift_and_scale = []
x = self.y_conv(x)
shift_and_scale.append(self.film[0](x, noise_scale))
for film, layer in zip(self.film[1:], self.dblocks):
x = layer(x)
shift_and_scale.append(film(x, noise_scale))
x = self.x_conv(spectrogram)
for layer, (film_shift, film_scale) in zip(self.ublocks,
reversed(shift_and_scale)):
x = layer(x, film_shift, film_scale)
x = self.out_conv(x)
return x
def load_noise_schedule(self, path):
beta = np.load(path, allow_pickle=True).item()['beta']
self.compute_noise_level(beta)
@torch.no_grad()
def inference(self, x, y_n=None):
""" x: B x D X T """
if y_n is None:
y_n = torch.randn(x.shape[0], 1, self.hop_len * x.shape[-1], dtype=torch.float32).to(x)
else:
y_n = torch.FloatTensor(y_n).unsqueeze(0).unsqueeze(0).to(x)
sqrt_alpha_hat = self.noise_level.to(x)
for n in range(len(self.alpha) - 1, -1, -1):
y_n = self.c1[n] * (y_n -
self.c2[n] * self.forward(y_n, x, sqrt_alpha_hat[n].repeat(x.shape[0])))
if n > 0:
z = torch.randn_like(y_n)
y_n += self.sigma[n - 1] * z
y_n.clamp_(-1.0, 1.0)
return y_n
def compute_y_n(self, y_0):
"""Compute noisy audio based on noise schedule"""
self.noise_level = self.noise_level.to(y_0)
if len(y_0.shape) == 3:
y_0 = y_0.squeeze(1)
s = torch.randint(0, self.num_steps - 1, [y_0.shape[0]])
l_a, l_b = self.noise_level[s], self.noise_level[s+1]
noise_scale = l_a + torch.rand(y_0.shape[0]).to(y_0) * (l_b - l_a)
noise_scale = noise_scale.unsqueeze(1)
noise = torch.randn_like(y_0)
noisy_audio = noise_scale * y_0 + (1.0 - noise_scale**2)**0.5 * noise
return noise.unsqueeze(1), noisy_audio.unsqueeze(1), noise_scale[:, 0]
def compute_noise_level(self, beta):
"""Compute noise schedule parameters"""
self.num_steps = len(beta)
alpha = 1 - beta
alpha_hat = np.cumprod(alpha)
noise_level = np.concatenate([[1.0], alpha_hat ** 0.5], axis=0)
noise_level = alpha_hat ** 0.5
# pylint: disable=not-callable
self.beta = torch.tensor(beta.astype(np.float32))
self.alpha = torch.tensor(alpha.astype(np.float32))
self.alpha_hat = torch.tensor(alpha_hat.astype(np.float32))
self.noise_level = torch.tensor(noise_level.astype(np.float32))
self.c1 = 1 / self.alpha**0.5
self.c2 = (1 - self.alpha) / (1 - self.alpha_hat)**0.5
self.sigma = ((1.0 - self.alpha_hat[:-1]) / (1.0 - self.alpha_hat[1:]) * self.beta[1:])**0.5
def remove_weight_norm(self):
for _, layer in enumerate(self.dblocks):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
layer.remove_weight_norm()
for _, layer in enumerate(self.film):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
layer.remove_weight_norm()
for _, layer in enumerate(self.ublocks):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.x_conv)
nn.utils.remove_weight_norm(self.out_conv)
nn.utils.remove_weight_norm(self.y_conv)
def apply_weight_norm(self):
for _, layer in enumerate(self.dblocks):
if len(layer.state_dict()) != 0:
layer.apply_weight_norm()
for _, layer in enumerate(self.film):
if len(layer.state_dict()) != 0:
layer.apply_weight_norm()
for _, layer in enumerate(self.ublocks):
if len(layer.state_dict()) != 0:
layer.apply_weight_norm()
self.x_conv = weight_norm(self.x_conv)
self.out_conv = weight_norm(self.out_conv)
self.y_conv = weight_norm(self.y_conv)
def load_checkpoint(self, config, checkpoint_path, eval=False): # pylint: disable=unused-argument, redefined-builtin
state = torch.load(checkpoint_path, map_location=torch.device('cpu'))
self.load_state_dict(state['model'])
if eval:
self.eval()
assert not self.training
if self.use_weight_norm:
self.remove_weight_norm()
betas = np.linspace(config['test_noise_schedule']['min_val'],
config['test_noise_schedule']['max_val'],
config['test_noise_schedule']['num_steps'])
self.compute_noise_level(betas)
else:
betas = np.linspace(config['train_noise_schedule']['min_val'],
config['train_noise_schedule']['max_val'],
config['train_noise_schedule']['num_steps'])
self.compute_noise_level(betas)