File size: 9,856 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import argparse
import os
import sys
import time
import traceback

import torch
from torch.utils.data import DataLoader
from TTS.speaker_encoder.dataset import MyDataset
from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss
from TTS.speaker_encoder.model import SpeakerEncoder
from TTS.speaker_encoder.utils.generic_utils import \
    check_config_speaker_encoder, save_best_model
from TTS.speaker_encoder.utils.visual import plot_embeddings
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import (count_parameters,
                                     create_experiment_folder, get_git_branch,
                                     remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import NoamLR, check_update

torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(54321)
use_cuda = torch.cuda.is_available()
num_gpus = torch.cuda.device_count()
print(" > Using CUDA: ", use_cuda)
print(" > Number of GPUs: ", num_gpus)


def setup_loader(ap: AudioProcessor, is_val: bool=False, verbose: bool=False):
    if is_val:
        loader = None
    else:
        dataset = MyDataset(ap,
                            meta_data_eval if is_val else meta_data_train,
                            voice_len=1.6,
                            num_utter_per_speaker=c.num_utters_per_speaker,
                            num_speakers_in_batch=c.num_speakers_in_batch,
                            skip_speakers=False,
                            storage_size=c.storage["storage_size"],
                            sample_from_storage_p=c.storage["sample_from_storage_p"],
                            additive_noise=c.storage["additive_noise"],
                            verbose=verbose)
        # sampler = DistributedSampler(dataset) if num_gpus > 1 else None
        loader = DataLoader(dataset,
                            batch_size=c.num_speakers_in_batch,
                            shuffle=False,
                            num_workers=c.num_loader_workers,
                            collate_fn=dataset.collate_fn)
    return loader


def train(model, criterion, optimizer, scheduler, ap, global_step):
    data_loader = setup_loader(ap, is_val=False, verbose=True)
    model.train()
    epoch_time = 0
    best_loss = float('inf')
    avg_loss = 0
    avg_loader_time = 0
    end_time = time.time()
    for _, data in enumerate(data_loader):
        start_time = time.time()

        # setup input data
        inputs = data[0]
        loader_time = time.time() - end_time
        global_step += 1

        # setup lr
        if c.lr_decay:
            scheduler.step()
        optimizer.zero_grad()

        # dispatch data to GPU
        if use_cuda:
            inputs = inputs.cuda(non_blocking=True)
            # labels = labels.cuda(non_blocking=True)

        # forward pass model
        outputs = model(inputs)

        # loss computation
        loss = criterion(
            outputs.view(c.num_speakers_in_batch,
                         outputs.shape[0] // c.num_speakers_in_batch, -1))
        loss.backward()
        grad_norm, _ = check_update(model, c.grad_clip)
        optimizer.step()

        step_time = time.time() - start_time
        epoch_time += step_time

        # Averaged Loss and Averaged Loader Time
        avg_loss = 0.01 * loss.item() \
                   + 0.99 * avg_loss if avg_loss != 0 else loss.item()
        avg_loader_time = 1/c.num_loader_workers * loader_time + \
                          (c.num_loader_workers-1) / c.num_loader_workers * avg_loader_time if avg_loader_time != 0 else loader_time
        current_lr = optimizer.param_groups[0]['lr']

        if global_step % c.steps_plot_stats == 0:
            # Plot Training Epoch Stats
            train_stats = {
                "loss": avg_loss,
                "lr": current_lr,
                "grad_norm": grad_norm,
                "step_time": step_time,
                "avg_loader_time": avg_loader_time
            }
            tb_logger.tb_train_epoch_stats(global_step, train_stats)
            figures = {
                # FIXME: not constant
                "UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(),
                                             10),
            }
            tb_logger.tb_train_figures(global_step, figures)

        if global_step % c.print_step == 0:
            print(
                "   | > Step:{}  Loss:{:.5f}  AvgLoss:{:.5f}  GradNorm:{:.5f}  "
                "StepTime:{:.2f}  LoaderTime:{:.2f}  AvGLoaderTime:{:.2f}  LR:{:.6f}".format(
                    global_step, loss.item(), avg_loss, grad_norm, step_time,
                    loader_time, avg_loader_time, current_lr),
                flush=True)

        # save best model
        best_loss = save_best_model(model, optimizer, avg_loss, best_loss,
                                    OUT_PATH, global_step)

        end_time = time.time()
    return avg_loss, global_step


def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train
    global meta_data_eval

    ap = AudioProcessor(**c.audio)
    model = SpeakerEncoder(input_dim=c.model['input_dim'],
                           proj_dim=c.model['proj_dim'],
                           lstm_dim=c.model['lstm_dim'],
                           num_lstm_layers=c.model['num_lstm_layers'])
    optimizer = RAdam(model.parameters(), lr=c.lr)

    if c.loss == "ge2e":
        criterion = GE2ELoss(loss_method='softmax')
    elif c.loss == "angleproto":
        criterion = AngleProtoLoss()
    else:
        raise Exception("The %s  not is a loss supported" % c.loss)

    if args.restore_path:
        checkpoint = torch.load(args.restore_path)
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            # optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except KeyError:
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint, c)
            model.load_state_dict(model_dict)
            del model_dict
        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model = model.cuda()
        criterion.cuda()

    if c.lr_decay:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    # pylint: disable=redefined-outer-name
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    global_step = args.restore_step
    _, global_step = train(model, criterion, optimizer, scheduler, ap,
                           global_step)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--restore_path',
        type=str,
        help='Path to model outputs (checkpoint, tensorboard etc.).',
        default=0)
    parser.add_argument(
        '--config_path',
        type=str,
        required=True,
        help='Path to config file for training.',
    )
    parser.add_argument('--debug',
                        type=bool,
                        default=True,
                        help='Do not verify commit integrity to run training.')
    parser.add_argument(
        '--data_path',
        type=str,
        default='',
        help='Defines the data path. It overwrites config.json.')
    parser.add_argument('--output_path',
                        type=str,
                        help='path for training outputs.',
                        default='')
    parser.add_argument('--output_folder',
                        type=str,
                        default='',
                        help='folder name for training outputs.')
    args = parser.parse_args()

    # setup output paths and read configs
    c = load_config(args.config_path)
    check_config_speaker_encoder(c)
    _ = os.path.dirname(os.path.realpath(__file__))
    if args.data_path != '':
        c.data_path = args.data_path

    if args.output_path == '':
        OUT_PATH = os.path.join(_, c.output_path)
    else:
        OUT_PATH = args.output_path

    if args.output_folder == '':
        OUT_PATH = create_experiment_folder(OUT_PATH, c.run_name, args.debug)
    else:
        OUT_PATH = os.path.join(OUT_PATH, args.output_folder)

    new_fields = {}
    if args.restore_path:
        new_fields["restore_path"] = args.restore_path
    new_fields["github_branch"] = get_git_branch()
    copy_model_files(c,  args.config_path, OUT_PATH,
                     new_fields)

    LOG_DIR = OUT_PATH
    tb_logger = TensorboardLogger(LOG_DIR, model_name='Speaker_Encoder')

    try:
        main(args)
    except KeyboardInterrupt:
        remove_experiment_folder(OUT_PATH)
        try:
            sys.exit(0)
        except SystemExit:
            os._exit(0)  # pylint: disable=protected-access
    except Exception:  # pylint: disable=broad-except
        remove_experiment_folder(OUT_PATH)
        traceback.print_exc()
        sys.exit(1)