File size: 9,856 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import sys
import time
import traceback
import torch
from torch.utils.data import DataLoader
from TTS.speaker_encoder.dataset import MyDataset
from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss
from TTS.speaker_encoder.model import SpeakerEncoder
from TTS.speaker_encoder.utils.generic_utils import \
check_config_speaker_encoder, save_best_model
from TTS.speaker_encoder.utils.visual import plot_embeddings
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import (count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import NoamLR, check_update
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(54321)
use_cuda = torch.cuda.is_available()
num_gpus = torch.cuda.device_count()
print(" > Using CUDA: ", use_cuda)
print(" > Number of GPUs: ", num_gpus)
def setup_loader(ap: AudioProcessor, is_val: bool=False, verbose: bool=False):
if is_val:
loader = None
else:
dataset = MyDataset(ap,
meta_data_eval if is_val else meta_data_train,
voice_len=1.6,
num_utter_per_speaker=c.num_utters_per_speaker,
num_speakers_in_batch=c.num_speakers_in_batch,
skip_speakers=False,
storage_size=c.storage["storage_size"],
sample_from_storage_p=c.storage["sample_from_storage_p"],
additive_noise=c.storage["additive_noise"],
verbose=verbose)
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(dataset,
batch_size=c.num_speakers_in_batch,
shuffle=False,
num_workers=c.num_loader_workers,
collate_fn=dataset.collate_fn)
return loader
def train(model, criterion, optimizer, scheduler, ap, global_step):
data_loader = setup_loader(ap, is_val=False, verbose=True)
model.train()
epoch_time = 0
best_loss = float('inf')
avg_loss = 0
avg_loader_time = 0
end_time = time.time()
for _, data in enumerate(data_loader):
start_time = time.time()
# setup input data
inputs = data[0]
loader_time = time.time() - end_time
global_step += 1
# setup lr
if c.lr_decay:
scheduler.step()
optimizer.zero_grad()
# dispatch data to GPU
if use_cuda:
inputs = inputs.cuda(non_blocking=True)
# labels = labels.cuda(non_blocking=True)
# forward pass model
outputs = model(inputs)
# loss computation
loss = criterion(
outputs.view(c.num_speakers_in_batch,
outputs.shape[0] // c.num_speakers_in_batch, -1))
loss.backward()
grad_norm, _ = check_update(model, c.grad_clip)
optimizer.step()
step_time = time.time() - start_time
epoch_time += step_time
# Averaged Loss and Averaged Loader Time
avg_loss = 0.01 * loss.item() \
+ 0.99 * avg_loss if avg_loss != 0 else loss.item()
avg_loader_time = 1/c.num_loader_workers * loader_time + \
(c.num_loader_workers-1) / c.num_loader_workers * avg_loader_time if avg_loader_time != 0 else loader_time
current_lr = optimizer.param_groups[0]['lr']
if global_step % c.steps_plot_stats == 0:
# Plot Training Epoch Stats
train_stats = {
"loss": avg_loss,
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time,
"avg_loader_time": avg_loader_time
}
tb_logger.tb_train_epoch_stats(global_step, train_stats)
figures = {
# FIXME: not constant
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(),
10),
}
tb_logger.tb_train_figures(global_step, figures)
if global_step % c.print_step == 0:
print(
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
global_step, loss.item(), avg_loss, grad_norm, step_time,
loader_time, avg_loader_time, current_lr),
flush=True)
# save best model
best_loss = save_best_model(model, optimizer, avg_loss, best_loss,
OUT_PATH, global_step)
end_time = time.time()
return avg_loss, global_step
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train
global meta_data_eval
ap = AudioProcessor(**c.audio)
model = SpeakerEncoder(input_dim=c.model['input_dim'],
proj_dim=c.model['proj_dim'],
lstm_dim=c.model['lstm_dim'],
num_lstm_layers=c.model['num_lstm_layers'])
optimizer = RAdam(model.parameters(), lr=c.lr)
if c.loss == "ge2e":
criterion = GE2ELoss(loss_method='softmax')
elif c.loss == "angleproto":
criterion = AngleProtoLoss()
else:
raise Exception("The %s not is a loss supported" % c.loss)
if args.restore_path:
checkpoint = torch.load(args.restore_path)
try:
# TODO: fix optimizer init, model.cuda() needs to be called before
# optimizer restore
# optimizer.load_state_dict(checkpoint['optimizer'])
if c.reinit_layers:
raise RuntimeError
model.load_state_dict(checkpoint['model'])
except KeyError:
print(" > Partial model initialization.")
model_dict = model.state_dict()
model_dict = set_init_dict(model_dict, checkpoint, c)
model.load_state_dict(model_dict)
del model_dict
for group in optimizer.param_groups:
group['lr'] = c.lr
print(" > Model restored from step %d" % checkpoint['step'],
flush=True)
args.restore_step = checkpoint['step']
else:
args.restore_step = 0
if use_cuda:
model = model.cuda()
criterion.cuda()
if c.lr_decay:
scheduler = NoamLR(optimizer,
warmup_steps=c.warmup_steps,
last_epoch=args.restore_step - 1)
else:
scheduler = None
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
# pylint: disable=redefined-outer-name
meta_data_train, meta_data_eval = load_meta_data(c.datasets)
global_step = args.restore_step
_, global_step = train(model, criterion, optimizer, scheduler, ap,
global_step)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--restore_path',
type=str,
help='Path to model outputs (checkpoint, tensorboard etc.).',
default=0)
parser.add_argument(
'--config_path',
type=str,
required=True,
help='Path to config file for training.',
)
parser.add_argument('--debug',
type=bool,
default=True,
help='Do not verify commit integrity to run training.')
parser.add_argument(
'--data_path',
type=str,
default='',
help='Defines the data path. It overwrites config.json.')
parser.add_argument('--output_path',
type=str,
help='path for training outputs.',
default='')
parser.add_argument('--output_folder',
type=str,
default='',
help='folder name for training outputs.')
args = parser.parse_args()
# setup output paths and read configs
c = load_config(args.config_path)
check_config_speaker_encoder(c)
_ = os.path.dirname(os.path.realpath(__file__))
if args.data_path != '':
c.data_path = args.data_path
if args.output_path == '':
OUT_PATH = os.path.join(_, c.output_path)
else:
OUT_PATH = args.output_path
if args.output_folder == '':
OUT_PATH = create_experiment_folder(OUT_PATH, c.run_name, args.debug)
else:
OUT_PATH = os.path.join(OUT_PATH, args.output_folder)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path, OUT_PATH,
new_fields)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name='Speaker_Encoder')
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)
|