Commit
·
3f57a17
1
Parent(s):
652bedc
Add model card
Browse files
README.md
CHANGED
|
@@ -1 +1,135 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: lv
|
| 3 |
+
datasets:
|
| 4 |
+
- common_voice
|
| 5 |
+
metrics:
|
| 6 |
+
- wer
|
| 7 |
+
tags:
|
| 8 |
+
- audio
|
| 9 |
+
- automatic-speech-recognition
|
| 10 |
+
- speech
|
| 11 |
+
- xlsr-fine-tuning-week
|
| 12 |
+
license: apache-2.0
|
| 13 |
+
model-index:
|
| 14 |
+
- name: Latvian XLSR Wav2Vec2 Large 53 by Anton Lozhkov
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
name: Speech Recognition
|
| 18 |
+
type: automatic-speech-recognition
|
| 19 |
+
dataset:
|
| 20 |
+
name: Common Voice lv
|
| 21 |
+
type: common_voice
|
| 22 |
+
args: lv
|
| 23 |
+
metrics:
|
| 24 |
+
- name: Test WER
|
| 25 |
+
type: wer
|
| 26 |
+
value: 26.89
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
# Wav2Vec2-Large-XLSR-53-Latvian
|
| 30 |
+
|
| 31 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Latvian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
|
| 32 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
| 33 |
+
|
| 34 |
+
## Usage
|
| 35 |
+
|
| 36 |
+
The model can be used directly (without a language model) as follows:
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
import torch
|
| 40 |
+
import torchaudio
|
| 41 |
+
from datasets import load_dataset
|
| 42 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 43 |
+
|
| 44 |
+
test_dataset = load_dataset("common_voice", "lv", split="test[:2%]")
|
| 45 |
+
|
| 46 |
+
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian")
|
| 47 |
+
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian")
|
| 48 |
+
|
| 49 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 50 |
+
|
| 51 |
+
# Preprocessing the datasets.
|
| 52 |
+
# We need to read the audio files as arrays
|
| 53 |
+
def speech_file_to_array_fn(batch):
|
| 54 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 55 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 56 |
+
return batch
|
| 57 |
+
|
| 58 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 59 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 60 |
+
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 63 |
+
|
| 64 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 65 |
+
|
| 66 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
| 67 |
+
print("Reference:", test_dataset["sentence"][:2])
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
## Evaluation
|
| 72 |
+
|
| 73 |
+
The model can be evaluated as follows on the Latvian test data of Common Voice.
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
import torch
|
| 77 |
+
import torchaudio
|
| 78 |
+
import urllib.request
|
| 79 |
+
import tarfile
|
| 80 |
+
import pandas as pd
|
| 81 |
+
from tqdm.auto import tqdm
|
| 82 |
+
from datasets import load_metric
|
| 83 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 84 |
+
|
| 85 |
+
# Download the raw data instead of using HF datasets to save disk space
|
| 86 |
+
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/lv.tar.gz"
|
| 87 |
+
filestream = urllib.request.urlopen(data_url)
|
| 88 |
+
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
|
| 89 |
+
data_file.extractall()
|
| 90 |
+
|
| 91 |
+
wer = load_metric("wer")
|
| 92 |
+
|
| 93 |
+
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian")
|
| 94 |
+
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian")
|
| 95 |
+
model.to("cuda")
|
| 96 |
+
|
| 97 |
+
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/lv/test.tsv", sep='\t')
|
| 98 |
+
clips_path = "cv-corpus-6.1-2020-12-11/lv/clips/"
|
| 99 |
+
|
| 100 |
+
def clean_sentence(sent):
|
| 101 |
+
sent = sent.lower()
|
| 102 |
+
# replace non-alpha characters with space
|
| 103 |
+
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
|
| 104 |
+
# remove repeated spaces
|
| 105 |
+
sent = " ".join(sent.split())
|
| 106 |
+
return sent
|
| 107 |
+
|
| 108 |
+
targets = []
|
| 109 |
+
preds = []
|
| 110 |
+
|
| 111 |
+
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
|
| 112 |
+
row["sentence"] = clean_sentence(row["sentence"])
|
| 113 |
+
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
|
| 114 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
|
| 115 |
+
row["speech"] = resampler(speech_array).squeeze().numpy()
|
| 116 |
+
|
| 117 |
+
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 118 |
+
|
| 119 |
+
with torch.no_grad():
|
| 120 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
| 121 |
+
|
| 122 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 123 |
+
|
| 124 |
+
targets.append(row["sentence"])
|
| 125 |
+
preds.append(processor.batch_decode(pred_ids)[0])
|
| 126 |
+
|
| 127 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
**Test Result**: 26.89 %
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
## Training
|
| 134 |
+
|
| 135 |
+
The Common Voice `train` and `validation` datasets were used for training.
|