Update README.md
Browse files
README.md
CHANGED
@@ -2,198 +2,71 @@
|
|
2 |
datasets:
|
3 |
- code_search_net
|
4 |
---
|
5 |
-
# Model Card for Model ID
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
10 |
-
|
11 |
-
## Model Details
|
12 |
-
|
13 |
-
### Model Description
|
14 |
-
|
15 |
-
<!-- Provide a longer summary of what this model is. -->
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
- **Developed by:** [More Information Needed]
|
20 |
-
- **Shared by [optional]:** [More Information Needed]
|
21 |
-
- **Model type:** [More Information Needed]
|
22 |
-
- **Language(s) (NLP):** [More Information Needed]
|
23 |
-
- **License:** [More Information Needed]
|
24 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
25 |
-
|
26 |
-
### Model Sources [optional]
|
27 |
-
|
28 |
-
<!-- Provide the basic links for the model. -->
|
29 |
-
|
30 |
-
- **Repository:** [More Information Needed]
|
31 |
-
- **Paper [optional]:** [More Information Needed]
|
32 |
-
- **Demo [optional]:** [More Information Needed]
|
33 |
-
|
34 |
-
## Uses
|
35 |
-
|
36 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
37 |
-
|
38 |
-
### Direct Use
|
39 |
-
|
40 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
41 |
-
|
42 |
-
[More Information Needed]
|
43 |
-
|
44 |
-
### Downstream Use [optional]
|
45 |
-
|
46 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
47 |
-
|
48 |
-
[More Information Needed]
|
49 |
-
|
50 |
-
### Out-of-Scope Use
|
51 |
-
|
52 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
53 |
-
|
54 |
-
[More Information Needed]
|
55 |
-
|
56 |
-
## Bias, Risks, and Limitations
|
57 |
-
|
58 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
59 |
-
|
60 |
-
[More Information Needed]
|
61 |
-
|
62 |
-
### Recommendations
|
63 |
-
|
64 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
65 |
-
|
66 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
67 |
-
|
68 |
-
## How to Get Started with the Model
|
69 |
-
|
70 |
-
Use the code below to get started with the model.
|
71 |
-
|
72 |
-
[More Information Needed]
|
73 |
-
|
74 |
-
## Training Details
|
75 |
-
|
76 |
-
### Training Data
|
77 |
-
|
78 |
-
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
79 |
-
|
80 |
-
[More Information Needed]
|
81 |
-
|
82 |
-
### Training Procedure
|
83 |
-
|
84 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
85 |
-
|
86 |
-
#### Preprocessing [optional]
|
87 |
-
|
88 |
-
[More Information Needed]
|
89 |
-
|
90 |
-
|
91 |
-
#### Training Hyperparameters
|
92 |
-
|
93 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
94 |
-
|
95 |
-
#### Speeds, Sizes, Times [optional]
|
96 |
-
|
97 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
98 |
-
|
99 |
-
[More Information Needed]
|
100 |
-
|
101 |
-
## Evaluation
|
102 |
-
|
103 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
104 |
-
|
105 |
-
### Testing Data, Factors & Metrics
|
106 |
-
|
107 |
-
#### Testing Data
|
108 |
-
|
109 |
-
<!-- This should link to a Data Card if possible. -->
|
110 |
-
|
111 |
-
[More Information Needed]
|
112 |
-
|
113 |
-
#### Factors
|
114 |
-
|
115 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
116 |
-
|
117 |
-
[More Information Needed]
|
118 |
-
|
119 |
-
#### Metrics
|
120 |
-
|
121 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
122 |
-
|
123 |
-
[More Information Needed]
|
124 |
-
|
125 |
-
### Results
|
126 |
-
|
127 |
-
[More Information Needed]
|
128 |
-
|
129 |
-
#### Summary
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
## Model Examination [optional]
|
134 |
-
|
135 |
-
<!-- Relevant interpretability work for the model goes here -->
|
136 |
-
|
137 |
-
[More Information Needed]
|
138 |
-
|
139 |
-
## Environmental Impact
|
140 |
-
|
141 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
142 |
-
|
143 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
144 |
-
|
145 |
-
- **Hardware Type:** [More Information Needed]
|
146 |
-
- **Hours used:** [More Information Needed]
|
147 |
-
- **Cloud Provider:** [More Information Needed]
|
148 |
-
- **Compute Region:** [More Information Needed]
|
149 |
-
- **Carbon Emitted:** [More Information Needed]
|
150 |
-
|
151 |
-
## Technical Specifications [optional]
|
152 |
-
|
153 |
-
### Model Architecture and Objective
|
154 |
-
|
155 |
-
[More Information Needed]
|
156 |
-
|
157 |
-
### Compute Infrastructure
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
#### Hardware
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Software
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
## Citation [optional]
|
170 |
-
|
171 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
172 |
-
|
173 |
-
**BibTeX:**
|
174 |
-
|
175 |
-
[More Information Needed]
|
176 |
-
|
177 |
-
**APA:**
|
178 |
-
|
179 |
-
[More Information Needed]
|
180 |
-
|
181 |
-
## Glossary [optional]
|
182 |
-
|
183 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
## More Information [optional]
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## Model Card Authors [optional]
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## Model Card Contact
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
|
199 |
|
|
|
2 |
datasets:
|
3 |
- code_search_net
|
4 |
---
|
|
|
5 |
|
6 |
+
# Model Architecture
|
7 |
+
|
8 |
+
This model follows the distilroberta-base architecture. Futhermore, this model was initialized with the checkpoint of distilroberta-base.
|
9 |
+
|
10 |
+
# Pre-training phase
|
11 |
+
|
12 |
+
This model was pre-trained with the MLM objective (`mlm_probability=0.15`).
|
13 |
+
|
14 |
+
During this phase, the inputs had the following format:
|
15 |
+
$$\left[[CLS], t_1, \dots, t_n, [SEP], w_1, \dots, w_m\right[EOS]]$$
|
16 |
+
where $t_1, \dots, t_n$ are the code tokens and $w_1, \dots, w_m$ are the natural language description tokens. More concretely, this is the snippet that tokenizes the input:
|
17 |
+
```python
|
18 |
+
def tokenize_function_bimodal(examples, tokenizer, max_len):
|
19 |
+
codes = [' '.join(example) for example in examples['func_code_tokens']]
|
20 |
+
nls = [' '.join(example) for example in examples['func_documentation_tokens']]
|
21 |
+
pairs = [[c, nl] for c, nl in zip(codes, nls)]
|
22 |
+
return tokenizer(pairs, max_length=max_len, padding="max_length", truncation=True)
|
23 |
+
```
|
24 |
+
|
25 |
+
# Training details
|
26 |
+
|
27 |
+
- Max length: 512
|
28 |
+
- Effective batch size: 64
|
29 |
+
- Total steps: 60000
|
30 |
+
- Learning rate: 5e-4
|
31 |
+
|
32 |
+
# Usage
|
33 |
+
|
34 |
+
```python
|
35 |
+
model = AutoModelForMaskedLM.from_pretrained('antolin/distilroberta-base-csn-python-bimodal')
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained('antolin/distilroberta-base-csn-python-bimodal')
|
37 |
+
mask_filler = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
38 |
+
code_tokens = ["def", "<mask>", "(", "a", ",", "b", ")", ":", "if", "a", ">", "b", ":", "return", "a", "else", "return", "b"]
|
39 |
+
nl_tokens = ["return", "the", "maximum", "value"]
|
40 |
+
input_text = ' '.join(code_tokens) + tokenizer.sep_token + ' '.join(nl_tokens)
|
41 |
+
pprint(mask_filler(input_text, top_k=5))
|
42 |
+
```
|
43 |
+
```shell
|
44 |
+
[{'score': 0.4645618796348572,
|
45 |
+
'sequence': 'def max ( a, b ) : if a > b : return a else return b return '
|
46 |
+
'the maximum value',
|
47 |
+
'token': 19220,
|
48 |
+
'token_str': ' max'},
|
49 |
+
{'score': 0.40963634848594666,
|
50 |
+
'sequence': 'def maximum ( a, b ) : if a > b : return a else return b '
|
51 |
+
'return the maximum value',
|
52 |
+
'token': 4532,
|
53 |
+
'token_str': ' maximum'},
|
54 |
+
{'score': 0.02103462442755699,
|
55 |
+
'sequence': 'def min ( a, b ) : if a > b : return a else return b return '
|
56 |
+
'the maximum value',
|
57 |
+
'token': 5251,
|
58 |
+
'token_str': ' min'},
|
59 |
+
{'score': 0.014217409305274487,
|
60 |
+
'sequence': 'def value ( a, b ) : if a > b : return a else return b return '
|
61 |
+
'the maximum value',
|
62 |
+
'token': 923,
|
63 |
+
'token_str': ' value'},
|
64 |
+
{'score': 0.010762304067611694,
|
65 |
+
'sequence': 'def minimum ( a, b ) : if a > b : return a else return b '
|
66 |
+
'return the maximum value',
|
67 |
+
'token': 3527,
|
68 |
+
'token_str': ' minimum'}]
|
69 |
+
```
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|