|
|
|
"""securecyphercreditcardanalysis.space |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1WKtvyEIBM5bPAPOmwXTGkEAp8mSFNKii |
|
""" |
|
|
|
import numpy as np |
|
import pandas as pd |
|
|
|
import os |
|
for dirname, _, filenames in os.walk('/kaggle/input'): |
|
for filename in filenames: |
|
print(os.path.join(dirname, filename)) |
|
|
|
import numpy as np |
|
import pandas as pd |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.model_selection import train_test_split, GridSearchCV |
|
from sklearn.svm import SVC |
|
from sklearn.metrics import classification_report, confusion_matrix |
|
import joblib |
|
import matplotlib.pyplot as plt |
|
|
|
input = pd.read_csv('/content/credit_card_fraud_synthetic.csv') |
|
|
|
data = input.drop(['Timestamp', 'Transaction_Type', 'Location', 'Transaction_ID'], axis = 1) |
|
|
|
data |
|
|
|
y = data['Is_Fraudulent'] |
|
x = data.drop('Is_Fraudulent', axis = 1) |
|
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42) |
|
|
|
svm_model = SVC(kernel='rbf') |
|
svm_model.fit(X_train, y_train) |
|
|
|
y_pred = svm_model.predict(X_test) |
|
|
|
print("Confusion Matrix:") |
|
print(confusion_matrix(y_test, y_pred)) |
|
|
|
print("Classification Report:") |
|
print(classification_report(y_test, y_pred)) |
|
|
|
from sklearn.metrics import accuracy_score |
|
Accu = accuracy_score(y_test, y_pred) |
|
Accu = Accu * 100 |
|
print("The Accuracy of the model is ", round(Accu, 2), "%") |