Upload holowealth.py
Browse files- holowealth.py +54 -0
holowealth.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""HoloWealth
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1lObCKG_uGdcldMmKDoHnuSd34OUy4EmH
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
from matplotlib.animation import FuncAnimation
|
14 |
+
|
15 |
+
waveform_size = 100
|
16 |
+
frequency = 0.5
|
17 |
+
amplitude = 5.0
|
18 |
+
direction_angle = np.pi / 4
|
19 |
+
total_time_hours = 24
|
20 |
+
time_steps = 240
|
21 |
+
|
22 |
+
time_interval = total_time_hours / time_steps
|
23 |
+
|
24 |
+
x = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
|
25 |
+
y = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
|
26 |
+
X, Y = torch.meshgrid(x, y)
|
27 |
+
|
28 |
+
def infinite_waveform(t):
|
29 |
+
return amplitude * torch.cos(2 * np.pi * frequency * (X * torch.cos(direction) + Y * torch.sin(direction_angle)) + 2 * np.pi * t)
|
30 |
+
|
31 |
+
wealth_data = torch.rand(waveform_size, waveform_size) * 100
|
32 |
+
total_wealth_energy = wealth_data ** 2
|
33 |
+
|
34 |
+
noise_mask = torch.randn(waveform_size, waveform_size) * 0.1
|
35 |
+
protected_wealth_energy = total_wealth_energy + noise_mask
|
36 |
+
|
37 |
+
wealth_energy_per_time = protected_wealth_energy / time_steps
|
38 |
+
|
39 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
40 |
+
signal_plot = ax.imshow(torch.zeros(waveform_size, waveform_size).numpy(), cmap='plasma', origin='lower')
|
41 |
+
plt.colorbar(signal_plot, ax=ax, label='Signal Intensity')
|
42 |
+
ax.set_title("HoloWealth")
|
43 |
+
ax.set_xlabel('X Axis')
|
44 |
+
ax.set_ylabel('Y Axis')
|
45 |
+
|
46 |
+
def update(t):
|
47 |
+
wave = infinite_waveform(t * time_interval)
|
48 |
+
combined_signal = wave * wealth_energy_per_time
|
49 |
+
signal_plot.set_data(combined_signal.numpy())
|
50 |
+
ax.set_title(f"Signal at Time Step: {t}/{time_steps}")
|
51 |
+
|
52 |
+
ani = FuncAnimation(fig, update, frames=time_steps, interval=100, repeat=False)
|
53 |
+
|
54 |
+
plt.show()
|