--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-survey-category-0.0.1 results: [] --- # distilbert-base-uncased-survey-category-0.0.1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1004 - Accuracy: 0.9886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 232 | 0.1063 | 0.9773 | | No log | 2.0 | 464 | 0.0811 | 0.9773 | | 0.2551 | 3.0 | 696 | 0.0704 | 0.9830 | | 0.2551 | 4.0 | 928 | 0.0903 | 0.9830 | | 0.0423 | 5.0 | 1160 | 0.0949 | 0.9830 | | 0.0423 | 6.0 | 1392 | 0.0890 | 0.9886 | | 0.0268 | 7.0 | 1624 | 0.0916 | 0.9886 | | 0.0268 | 8.0 | 1856 | 0.1001 | 0.9886 | | 0.0246 | 9.0 | 2088 | 0.0965 | 0.9886 | | 0.0246 | 10.0 | 2320 | 0.1002 | 0.9886 | | 0.0156 | 11.0 | 2552 | 0.0785 | 0.9886 | | 0.0156 | 12.0 | 2784 | 0.0904 | 0.9886 | | 0.0157 | 13.0 | 3016 | 0.0825 | 0.9886 | | 0.0157 | 14.0 | 3248 | 0.0999 | 0.9886 | | 0.0157 | 15.0 | 3480 | 0.1004 | 0.9886 | | 0.0137 | 16.0 | 3712 | 0.1020 | 0.9886 | | 0.0137 | 17.0 | 3944 | 0.1010 | 0.9886 | | 0.0152 | 18.0 | 4176 | 0.1002 | 0.9886 | | 0.0152 | 19.0 | 4408 | 0.0999 | 0.9886 | | 0.0114 | 20.0 | 4640 | 0.1004 | 0.9886 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0