File size: 2,701 Bytes
4152747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-survey-category-0.0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-survey-category-0.0.1

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1004
- Accuracy: 0.9886

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 232  | 0.1063          | 0.9773   |
| No log        | 2.0   | 464  | 0.0811          | 0.9773   |
| 0.2551        | 3.0   | 696  | 0.0704          | 0.9830   |
| 0.2551        | 4.0   | 928  | 0.0903          | 0.9830   |
| 0.0423        | 5.0   | 1160 | 0.0949          | 0.9830   |
| 0.0423        | 6.0   | 1392 | 0.0890          | 0.9886   |
| 0.0268        | 7.0   | 1624 | 0.0916          | 0.9886   |
| 0.0268        | 8.0   | 1856 | 0.1001          | 0.9886   |
| 0.0246        | 9.0   | 2088 | 0.0965          | 0.9886   |
| 0.0246        | 10.0  | 2320 | 0.1002          | 0.9886   |
| 0.0156        | 11.0  | 2552 | 0.0785          | 0.9886   |
| 0.0156        | 12.0  | 2784 | 0.0904          | 0.9886   |
| 0.0157        | 13.0  | 3016 | 0.0825          | 0.9886   |
| 0.0157        | 14.0  | 3248 | 0.0999          | 0.9886   |
| 0.0157        | 15.0  | 3480 | 0.1004          | 0.9886   |
| 0.0137        | 16.0  | 3712 | 0.1020          | 0.9886   |
| 0.0137        | 17.0  | 3944 | 0.1010          | 0.9886   |
| 0.0152        | 18.0  | 4176 | 0.1002          | 0.9886   |
| 0.0152        | 19.0  | 4408 | 0.0999          | 0.9886   |
| 0.0114        | 20.0  | 4640 | 0.1004          | 0.9886   |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0