|
|
"""
|
|
|
Training script for surgical instrument classification
|
|
|
"""
|
|
|
|
|
|
import os
|
|
|
import pickle
|
|
|
import cv2
|
|
|
import pandas as pd
|
|
|
import numpy as np
|
|
|
from utils.utils import extract_features_from_image, fit_pca_lda_transformer, train_svm_model
|
|
|
|
|
|
|
|
|
def train_and_save_model(base_path, images_folder, gt_csv, save_dir, n_components=100):
|
|
|
"""
|
|
|
Complete training pipeline that saves everything needed for submission
|
|
|
|
|
|
Args:
|
|
|
base_path: Base directory path
|
|
|
images_folder: Folder name containing images
|
|
|
gt_csv: Ground truth CSV filename
|
|
|
save_dir: Directory to save model artifacts
|
|
|
n_components: Number of PCA components
|
|
|
"""
|
|
|
|
|
|
print("="*80)
|
|
|
print("TRAINING SURGICAL INSTRUMENT CLASSIFIER")
|
|
|
print("="*80)
|
|
|
|
|
|
|
|
|
PATH_TO_GT = os.path.join(base_path, gt_csv)
|
|
|
PATH_TO_IMAGES = os.path.join(base_path, images_folder)
|
|
|
|
|
|
print(f"\nConfiguration:")
|
|
|
print(f" Ground Truth: {PATH_TO_GT}")
|
|
|
print(f" Images: {PATH_TO_IMAGES}")
|
|
|
print(f" PCA Components: {n_components}")
|
|
|
print(f" Save directory: {save_dir}")
|
|
|
|
|
|
|
|
|
df = pd.read_csv(PATH_TO_GT)
|
|
|
print(f"\nLoaded {len(df)} training samples")
|
|
|
print(f"\nLabel distribution:")
|
|
|
print(df['category_id'].value_counts().sort_index())
|
|
|
|
|
|
|
|
|
print(f"\n{'='*80}")
|
|
|
print("STEP 1: FEATURE EXTRACTION")
|
|
|
print("="*80)
|
|
|
|
|
|
features = []
|
|
|
labels = []
|
|
|
|
|
|
for i in range(len(df)):
|
|
|
if i % 500 == 0:
|
|
|
print(f" Processing {i}/{len(df)}...")
|
|
|
|
|
|
image_name = df.iloc[i]["file_name"]
|
|
|
label = df.iloc[i]["category_id"]
|
|
|
|
|
|
path_to_image = os.path.join(PATH_TO_IMAGES, image_name)
|
|
|
|
|
|
try:
|
|
|
image = cv2.imread(path_to_image)
|
|
|
if image is None:
|
|
|
print(f" Warning: Could not read {image_name}, skipping...")
|
|
|
continue
|
|
|
|
|
|
|
|
|
image_features = extract_features_from_image(image)
|
|
|
|
|
|
features.append(image_features)
|
|
|
labels.append(label)
|
|
|
|
|
|
except Exception as e:
|
|
|
print(f" Error processing {image_name}: {e}")
|
|
|
continue
|
|
|
|
|
|
features_array = np.array(features)
|
|
|
labels_array = np.array(labels)
|
|
|
|
|
|
print(f"\nFeature extraction complete!")
|
|
|
print(f" Features shape: {features_array.shape}")
|
|
|
print(f" Labels shape: {labels_array.shape}")
|
|
|
print(f" Feature dimension: {features_array.shape[1]}")
|
|
|
|
|
|
|
|
|
print(f"\n{'='*80}")
|
|
|
print("STEP 2: HYBRID DIMENSIONALITY REDUCTION (PCA β LDA)")
|
|
|
print("="*80)
|
|
|
|
|
|
combined_params, features_reduced = fit_pca_lda_transformer(
|
|
|
features_array,
|
|
|
labels_array,
|
|
|
n_pca_components=N_COMPONENTS
|
|
|
)
|
|
|
|
|
|
print(f"\n Final dimension: {features_reduced.shape[1]}")
|
|
|
print(f" Compression ratio: {features_array.shape[1] / features_reduced.shape[1]:.1f}x")
|
|
|
|
|
|
|
|
|
print(f"\n{'='*80}")
|
|
|
print("STEP 3: TRAINING SVM CLASSIFIER")
|
|
|
print("="*80)
|
|
|
|
|
|
train_results = train_svm_model(features_reduced, labels_array)
|
|
|
|
|
|
svm_model = train_results['model']
|
|
|
|
|
|
print(f"\nTraining complete!")
|
|
|
print(f" Support vectors: {len(svm_model.support_)}")
|
|
|
|
|
|
|
|
|
print(f"\n{'='*80}")
|
|
|
print("STEP 4: SAVING MODEL ARTIFACTS")
|
|
|
print("="*80)
|
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
model_path = os.path.join(save_dir, "multiclass_model.pkl")
|
|
|
with open(model_path, "wb") as f:
|
|
|
pickle.dump(svm_model, f)
|
|
|
print(f" β Saved SVM model: {model_path}")
|
|
|
|
|
|
|
|
|
|
|
|
params_path = os.path.join(save_dir, "pca_lda_params.pkl")
|
|
|
with open(params_path, "wb") as f:
|
|
|
pickle.dump(combined_params, f)
|
|
|
print(f" β Saved PCA+LDA params: {params_path}")
|
|
|
|
|
|
print(f"\n{'='*80}")
|
|
|
print("TRAINING COMPLETE!")
|
|
|
print("="*80)
|
|
|
print(f"\nFinal Results:")
|
|
|
print(f" Train Accuracy: {train_results['train_accuracy']:.4f}")
|
|
|
print(f" Test Accuracy: {train_results['test_accuracy']:.4f}")
|
|
|
print(f" Test F1-score: {train_results['test_f1']:.4f}")
|
|
|
print(f"\nFiles saved to: {save_dir}")
|
|
|
print(f"\nNext steps:")
|
|
|
print(f" 1. Create a 'utils' folder in your HuggingFace repository")
|
|
|
print(f" 2. Copy utils.py into the 'utils' folder")
|
|
|
print(f" 3. Copy script.py, multiclass_model.pkl, and pca_params.pkl to the repository root")
|
|
|
print(f" 4. Create an empty __init__.py file in the 'utils' folder")
|
|
|
print(f" 5. Submit to competition!")
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
BASE_PATH = "C:/Users/anna2/ISM/ANNA/phase1a2"
|
|
|
IMAGES_FOLDER = "C:/Users/anna2/ISM/Images"
|
|
|
GT_CSV = "C:/Users/anna2/ISM/Baselines/phase_1a/gt_for_classification_multiclass_from_filenames_0_index.csv"
|
|
|
|
|
|
SAVE_DIR = "C:/Users/anna2/ISM/ANNA/phase1a2/submission"
|
|
|
|
|
|
|
|
|
N_COMPONENTS = 250
|
|
|
|
|
|
|
|
|
train_and_save_model(BASE_PATH, IMAGES_FOLDER, GT_CSV, SAVE_DIR, N_COMPONENTS) |