File size: 2,540 Bytes
5958fad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
"""
Inference script
Version combining baseline structure with enhanced features
"""
import os
import pickle
import cv2
import pandas as pd
import numpy as np
from utils.utils import extract_features_from_image, apply_pca_lda_transform
def run_inference(TEST_IMAGE_PATH, svm_model, pca_params, SUBMISSION_CSV_SAVE_PATH):
"""
Run inference on test images
Args:
TEST_IMAGE_PATH: Path to test images (/tmp/data/test_images)
svm_model: Trained SVM model
pca_params: Dictionary containing PCA transformation parameters
SUBMISSION_CSV_SAVE_PATH: Path to save submission.csv
"""
# Load test images
test_images = os.listdir(TEST_IMAGE_PATH)
test_images.sort()
# Extract features from all test images
image_feature_list = []
for test_image in test_images:
path_to_image = os.path.join(TEST_IMAGE_PATH, test_image)
image = cv2.imread(path_to_image)
# Extract features (using enhanced features by default)
image_features = extract_features_from_image(image)
image_feature_list.append(image_features)
features_array = np.array(image_feature_list)
# Apply PCA transformation using saved parameters
features_reduced = apply_pca_lda_transform(features_array, pca_params)
# Run predictions
predictions = svm_model.predict(features_reduced)
# Create submission CSV
df_predictions = pd.DataFrame({
"file_name": test_images,
"category_id": predictions
})
df_predictions.to_csv(SUBMISSION_CSV_SAVE_PATH, index=False)
if __name__ == "__main__":
# Paths
current_directory = os.path.dirname(os.path.abspath(__file__))
TEST_IMAGE_PATH = "/tmp/data/test_images"
MODEL_NAME = "multiclass_model.pkl"
MODEL_PATH = os.path.join(current_directory, MODEL_NAME)
PCA_LDA_PARAMS_NAME = "pca_lda_params.pkl"
PCA_LDA_PARAMS_PATH = os.path.join(current_directory, PCA_LDA_PARAMS_NAME)
SUBMISSION_CSV_SAVE_PATH = os.path.join(current_directory, "submission.csv")
# Load trained SVM model
with open(MODEL_PATH, 'rb') as file:
svm_model = pickle.load(file)
# Load PCA parameters
with open(PCA_LDA_PARAMS_PATH, 'rb') as file:
pca_params = pickle.load(file)
# Run inference
run_inference(TEST_IMAGE_PATH, svm_model, pca_params, SUBMISSION_CSV_SAVE_PATH) |