ankurani commited on
Commit
8d63d94
·
1 Parent(s): 7440303

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -2
README.md CHANGED
@@ -2,9 +2,38 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
 
 
 
 
 
5
  model-index:
6
  - name: albert-base-v2-finetuned-ner
7
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -12,7 +41,13 @@ should probably proofread and complete it, then remove this comment. -->
12
 
13
  # albert-base-v2-finetuned-ner
14
 
15
- This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset.
 
 
 
 
 
 
16
 
17
  ## Model description
18
 
@@ -39,6 +74,14 @@ The following hyperparameters were used during training:
39
  - lr_scheduler_type: linear
40
  - num_epochs: 2
41
 
 
 
 
 
 
 
 
 
42
  ### Framework versions
43
 
44
  - Transformers 4.22.2
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
+ datasets:
6
+ - plod-filtered
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
  model-index:
13
  - name: albert-base-v2-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: plod-filtered
20
+ type: plod-filtered
21
+ config: PLODfiltered
22
+ split: validation
23
+ args: PLODfiltered
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.988973631766888
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.988142815877984
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9885580492613874
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9883807619910069
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  # albert-base-v2-finetuned-ner
43
 
44
+ This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the plod-filtered dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0319
47
+ - Precision: 0.9890
48
+ - Recall: 0.9881
49
+ - F1: 0.9886
50
+ - Accuracy: 0.9884
51
 
52
  ## Model description
53
 
 
74
  - lr_scheduler_type: linear
75
  - num_epochs: 2
76
 
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0649 | 1.0 | 3018 | 0.0471 | 0.9838 | 0.9814 | 0.9826 | 0.9818 |
82
+ | 0.0442 | 2.0 | 6036 | 0.0319 | 0.9890 | 0.9881 | 0.9886 | 0.9884 |
83
+
84
+
85
  ### Framework versions
86
 
87
  - Transformers 4.22.2