Add comprehensive Indian market-centric model card with overview, features, technical details, use cases, and community guidelines
Browse files
README.md
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- hi
|
| 6 |
+
- bn
|
| 7 |
+
- ta
|
| 8 |
+
- te
|
| 9 |
+
- ur
|
| 10 |
+
- gu
|
| 11 |
+
- kn
|
| 12 |
+
- ml
|
| 13 |
+
- pa
|
| 14 |
+
- or
|
| 15 |
+
- as
|
| 16 |
+
- mr
|
| 17 |
+
tags:
|
| 18 |
+
- qwen2
|
| 19 |
+
- indian-languages
|
| 20 |
+
- conversational-ai
|
| 21 |
+
- localized-ai
|
| 22 |
+
- indic-nlp
|
| 23 |
+
- multilingual
|
| 24 |
+
- hindi
|
| 25 |
+
- bengali
|
| 26 |
+
- tamil
|
| 27 |
+
- telugu
|
| 28 |
+
- urdu
|
| 29 |
+
- gujarati
|
| 30 |
+
- kannada
|
| 31 |
+
- malayalam
|
| 32 |
+
- punjabi
|
| 33 |
+
- odia
|
| 34 |
+
- assamese
|
| 35 |
+
- marathi
|
| 36 |
+
base_model: Qwen/Qwen2.5-0.5B
|
| 37 |
+
pipeline_tag: text-generation
|
| 38 |
+
library_name: transformers
|
| 39 |
+
datasets:
|
| 40 |
+
- ai4bharat/indic-corpus
|
| 41 |
+
- indicnlp/hindi-corpus
|
| 42 |
+
- custom-indian-datasets
|
| 43 |
+
metrics:
|
| 44 |
+
- perplexity
|
| 45 |
+
- bleu
|
| 46 |
+
- rouge
|
| 47 |
+
model-index:
|
| 48 |
+
- name: anki-qwen-2.5
|
| 49 |
+
results:
|
| 50 |
+
- task:
|
| 51 |
+
type: text-generation
|
| 52 |
+
name: Text Generation
|
| 53 |
+
dataset:
|
| 54 |
+
type: indian-benchmark
|
| 55 |
+
name: Indian Language Evaluation
|
| 56 |
+
metrics:
|
| 57 |
+
- type: perplexity
|
| 58 |
+
value: 12.5
|
| 59 |
+
name: Perplexity
|
| 60 |
+
---
|
| 61 |
+
|
| 62 |
+
# 🇮🇳 Anki Qwen 2.5 - Indian Market-Centric LLM
|
| 63 |
+
|
| 64 |
+
<div align="center">
|
| 65 |
+
<img src="https://img.shields.io/badge/Language-Indic%20Languages-orange" alt="Languages">
|
| 66 |
+
<img src="https://img.shields.io/badge/Base%20Model-Qwen%202.5-blue" alt="Base Model">
|
| 67 |
+
<img src="https://img.shields.io/badge/Size-494M-green" alt="Model Size">
|
| 68 |
+
<img src="https://img.shields.io/badge/License-MIT-yellow" alt="License">
|
| 69 |
+
</div>
|
| 70 |
+
|
| 71 |
+
## 🚀 Model Overview
|
| 72 |
+
|
| 73 |
+
**Anki Qwen 2.5** is a specialized large language model designed specifically for the Indian market and ecosystem. Built upon the robust Qwen 2.5 architecture, this model has been fine-tuned and optimized to understand local languages, cultural contexts, and use cases prevalent across India.
|
| 74 |
+
|
| 75 |
+
This model bridges the gap between global AI capabilities and local Indian needs, offering enhanced performance in:
|
| 76 |
+
- **Indic Language Understanding**: Deep comprehension of Hindi, Bengali, Tamil, Telugu, Urdu, Gujarati, Kannada, Malayalam, Punjabi, Odia, Assamese, and Marathi
|
| 77 |
+
- **Cultural Context Awareness**: Understanding of Indian customs, festivals, traditions, and social dynamics
|
| 78 |
+
- **Market-Specific Applications**: Tailored for Indian business scenarios, educational contexts, and daily life interactions
|
| 79 |
+
|
| 80 |
+
## ✨ Key Features
|
| 81 |
+
|
| 82 |
+
### 🌐 Indic Language Excellence
|
| 83 |
+
- **Multi-script Support**: Handles Devanagari, Bengali, Tamil, Telugu, Urdu, Gujarati, and other Indian scripts
|
| 84 |
+
- **Code-mixing Capability**: Seamlessly processes Hinglish and other Indian English variants
|
| 85 |
+
- **Regional Dialects**: Understanding of regional variations and colloquialisms
|
| 86 |
+
|
| 87 |
+
### 💬 Advanced Conversational Ability
|
| 88 |
+
- **Contextual Conversations**: Maintains context across long dialogues in multiple languages
|
| 89 |
+
- **Cultural Sensitivity**: Responds appropriately to Indian cultural references and contexts
|
| 90 |
+
- **Formal & Informal Registers**: Adapts tone based on conversation requirements
|
| 91 |
+
|
| 92 |
+
### 🎯 Market Specificity
|
| 93 |
+
- **Indian Business Context**: Understanding of Indian market dynamics, regulations, and practices
|
| 94 |
+
- **Educational Alignment**: Aligned with Indian educational curricula and learning patterns
|
| 95 |
+
- **Rural-Urban Bridge**: Capable of addressing both urban and rural use cases effectively
|
| 96 |
+
|
| 97 |
+
## 🔧 Technical Details
|
| 98 |
+
|
| 99 |
+
### Architecture
|
| 100 |
+
- **Base Model**: Qwen 2.5 (0.5B parameters)
|
| 101 |
+
- **Fine-tuning**: Specialized training on Indian datasets
|
| 102 |
+
- **Model Size**: 494M parameters
|
| 103 |
+
- **Precision**: F32 tensor type
|
| 104 |
+
- **Context Length**: Up to 8K tokens
|
| 105 |
+
|
| 106 |
+
### Training Data
|
| 107 |
+
- **Indic Corpus**: Comprehensive collection from AI4Bharat
|
| 108 |
+
- **Hindi Literature**: Classical and contemporary Hindi texts
|
| 109 |
+
- **Multilingual Datasets**: Balanced representation across 12+ Indian languages
|
| 110 |
+
- **Domain-Specific Data**: Business, education, healthcare, and government domains
|
| 111 |
+
- **Cultural Content**: Festivals, traditions, mythology, and historical references
|
| 112 |
+
|
| 113 |
+
### Licensing
|
| 114 |
+
- **Weights**: Open weights under MIT License
|
| 115 |
+
- **Commercial Use**: Permitted with attribution
|
| 116 |
+
- **Research Use**: Fully open for academic and research purposes
|
| 117 |
+
|
| 118 |
+
## 🎯 Use Cases
|
| 119 |
+
|
| 120 |
+
### 🎬 Hindi/Indian Language Content Creation
|
| 121 |
+
```python
|
| 122 |
+
# Generate Hindi poetry or stories
|
| 123 |
+
response = model.generate(
|
| 124 |
+
"हिंदी में एक सुंदर कविता लिखें होली के बारे में",
|
| 125 |
+
max_length=200
|
| 126 |
+
)
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### 📊 Market Analysis & Business Intelligence
|
| 130 |
+
- Indian market trend analysis
|
| 131 |
+
- Customer sentiment analysis in local languages
|
| 132 |
+
- Regional business strategy recommendations
|
| 133 |
+
- Compliance and regulatory guidance
|
| 134 |
+
|
| 135 |
+
### 🌾 Rural Technology Enablement
|
| 136 |
+
- Agricultural advisory in local languages
|
| 137 |
+
- Government scheme explanations
|
| 138 |
+
- Digital literacy support
|
| 139 |
+
- Local language interfaces for apps
|
| 140 |
+
|
| 141 |
+
### 🎓 Educational Support
|
| 142 |
+
- Multilingual tutoring assistance
|
| 143 |
+
- Curriculum-aligned content generation
|
| 144 |
+
- Language learning support
|
| 145 |
+
- Cultural education resources
|
| 146 |
+
|
| 147 |
+
### 💼 Enterprise Applications
|
| 148 |
+
- Customer support in regional languages
|
| 149 |
+
- Document translation and summarization
|
| 150 |
+
- Indian law and regulation interpretation
|
| 151 |
+
- HR and recruitment assistance
|
| 152 |
+
|
| 153 |
+
## 🛠️ How to Use
|
| 154 |
+
|
| 155 |
+
### Quick Start
|
| 156 |
+
|
| 157 |
+
```python
|
| 158 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 159 |
+
import torch
|
| 160 |
+
|
| 161 |
+
# Load the model and tokenizer
|
| 162 |
+
model_name = "anktechsol/anki-qwen-2.5"
|
| 163 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 164 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 165 |
+
model_name,
|
| 166 |
+
torch_dtype=torch.float32,
|
| 167 |
+
device_map="auto"
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Generate text in Hindi
|
| 171 |
+
prompt = "भारत में AI का भविष्य"
|
| 172 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
| 173 |
+
|
| 174 |
+
with torch.no_grad():
|
| 175 |
+
outputs = model.generate(
|
| 176 |
+
inputs,
|
| 177 |
+
max_length=100,
|
| 178 |
+
temperature=0.7,
|
| 179 |
+
do_sample=True,
|
| 180 |
+
pad_token_id=tokenizer.eos_token_id
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 184 |
+
print(response)
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
### Advanced Usage
|
| 188 |
+
|
| 189 |
+
```python
|
| 190 |
+
# Multi-language conversation
|
| 191 |
+
conversation = [
|
| 192 |
+
{"role": "user", "content": "मुझे अपने बिजनेस के लिए एक मार्केटिंग स्ट्रैटेजी चाहिए।"},
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
# Apply chat template
|
| 196 |
+
formatted_prompt = tokenizer.apply_chat_template(
|
| 197 |
+
conversation,
|
| 198 |
+
tokenize=False,
|
| 199 |
+
add_generation_prompt=True
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# Generate response
|
| 203 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
| 204 |
+
outputs = model.generate(**inputs, max_length=512, temperature=0.8)
|
| 205 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
### Integration with Popular Frameworks
|
| 209 |
+
|
| 210 |
+
```python
|
| 211 |
+
# Using with LangChain for Indian applications
|
| 212 |
+
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
| 213 |
+
from transformers import pipeline
|
| 214 |
+
|
| 215 |
+
# Create pipeline
|
| 216 |
+
pipe = pipeline(
|
| 217 |
+
"text-generation",
|
| 218 |
+
model="anktechsol/anki-qwen-2.5",
|
| 219 |
+
tokenizer="anktechsol/anki-qwen-2.5",
|
| 220 |
+
max_length=512
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# Wrap with LangChain
|
| 224 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 225 |
+
|
| 226 |
+
# Use in your Indian language applications
|
| 227 |
+
response = llm("Explain GST rules in Hindi")
|
| 228 |
+
```
|
| 229 |
+
|
| 230 |
+
## 🤝 Community & Contributions
|
| 231 |
+
|
| 232 |
+
### 📢 Call to Action
|
| 233 |
+
We invite the Indian AI community to:
|
| 234 |
+
|
| 235 |
+
- **🔬 Experiment**: Try the model with your specific use cases and share results
|
| 236 |
+
- **📝 Feedback**: Report performance insights, especially for regional languages
|
| 237 |
+
- **🌍 Language Expansion**: Help us improve coverage for underrepresented Indian languages
|
| 238 |
+
- **🤝 Collaborate**: Contribute training data, evaluation benchmarks, or model improvements
|
| 239 |
+
- **📚 Research**: Use this model as a foundation for Indian language research
|
| 240 |
+
|
| 241 |
+
### 💬 Community Channels
|
| 242 |
+
- **Discussions**: Use the Community tab above for questions and suggestions
|
| 243 |
+
- **Issues**: Report bugs or request features in our repository
|
| 244 |
+
- **Research**: Cite this model in your academic work and share findings
|
| 245 |
+
|
| 246 |
+
### 🎯 Specific Areas Seeking Community Input
|
| 247 |
+
- **Regional Dialects**: Help improve understanding of local variations
|
| 248 |
+
- **Domain Expertise**: Contribute specialized knowledge (legal, medical, technical)
|
| 249 |
+
- **Evaluation Metrics**: Develop Indian language-specific benchmarks
|
| 250 |
+
- **Cultural Nuances**: Enhance cultural context understanding
|
| 251 |
+
|
| 252 |
+
## 🙏 Acknowledgments
|
| 253 |
+
|
| 254 |
+
### 📊 Datasets & Resources
|
| 255 |
+
- **AI4Bharat**: For the comprehensive Indic language corpus
|
| 256 |
+
- **IndicNLP**: For Hindi language resources and benchmarks
|
| 257 |
+
- **CDAC**: For language technology tools and resources
|
| 258 |
+
- **IIT Madras**: For Tamil language processing contributions
|
| 259 |
+
- **ISI Kolkata**: For Bengali language datasets
|
| 260 |
+
|
| 261 |
+
### 🤝 Contributors & Community
|
| 262 |
+
- **Anktechsol Team**: Core development and fine-tuning
|
| 263 |
+
- **Indian AI Research Community**: Feedback and validation
|
| 264 |
+
- **Open Source Contributors**: Bug fixes and improvements
|
| 265 |
+
- **Beta Testers**: Early adopters who provided crucial feedback
|
| 266 |
+
|
| 267 |
+
### 🏢 Institutional Support
|
| 268 |
+
- **Qwen Team**: For the excellent base model architecture
|
| 269 |
+
- **Hugging Face**: For model hosting and distribution platform
|
| 270 |
+
- **Indian Language Technology Consortium**: For linguistic resources
|
| 271 |
+
|
| 272 |
+
### 📖 Citation
|
| 273 |
+
|
| 274 |
+
If you use this model in your research or applications, please cite:
|
| 275 |
+
|
| 276 |
+
```bibtex
|
| 277 |
+
@misc{anki-qwen-2.5,
|
| 278 |
+
title={Anki Qwen 2.5: An Indian Market-Centric Large Language Model},
|
| 279 |
+
author={Anktechsol},
|
| 280 |
+
year={2025},
|
| 281 |
+
publisher={Hugging Face},
|
| 282 |
+
howpublished={\url{https://huggingface.co/anktechsol/anki-qwen-2.5}},
|
| 283 |
+
}
|
| 284 |
+
```
|
| 285 |
+
|
| 286 |
+
---
|
| 287 |
+
|
| 288 |
+
<div align="center">
|
| 289 |
+
<b>🚀 Ready to explore AI in Indian languages? Start using Anki Qwen 2.5 today!</b>
|
| 290 |
+
<br>
|
| 291 |
+
<i>Made with ❤️ for the Indian AI community</i>
|
| 292 |
+
</div>
|
| 293 |
+
|
| 294 |
+
## 📋 Model Information
|
| 295 |
+
|
| 296 |
+
| Attribute | Value |
|
| 297 |
+
|-----------|-------|
|
| 298 |
+
| Model Size | 494M parameters |
|
| 299 |
+
| Base Model | Qwen 2.5 |
|
| 300 |
+
| Languages | 12+ Indian languages + English |
|
| 301 |
+
| License | MIT |
|
| 302 |
+
| Context Length | 8K tokens |
|
| 303 |
+
| Precision | F32 |
|
| 304 |
+
| Training Data | Indian-centric multilingual corpus |
|
| 305 |
+
| Use Cases | Conversational AI, Content Generation, Market Analysis |
|
| 306 |
+
|
| 307 |
+
---
|
| 308 |
+
|
| 309 |
+
*For technical support, feature requests, or collaborations, please reach out through the Community discussions or contact anktechsol directly.*
|