--- license: apache-2.0 datasets: - anithasoma/refined_en_te language: - en - te metrics: - bleu - sacrebleu base_model: - facebook/nllb-200-distilled-600M pipeline_tag: translation library_name: transformers tags: - text-generation - translation - fine-tuned-model - colloquial-language - telugu - machine-translation --- # NLLB-200 Fine-Tuned for Colloquial Telugu ## Model Description This model is a fine-tuned version of the [NLLB-200 (Distilled 600M)](https://huggingface.co/facebook/nllb-200-distilled-600M) designed for translating English sentences into colloquial Telugu. It has been optimized to better capture informal and conversational nuances. ## Model Details - **Model Name:** anithasoma/nllb-finetuned-telugu - **Base Model:** facebook/nllb-200-distilled-600M - **Fine-Tuned By:** [anithasoma](https://huggingface.co/anithasoma) - **Languages:** English → Telugu (colloquial) - **Framework:** Transformers (🤗 Hugging Face) - ## 🚀 Run the Model on Google Colab [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CiuywF2xzdzFH7jvQ7UIrBo4tI9FI9Nf?usp=sharing) Click the badge above to launch the model in Google Colab! ## Training Details - **Dataset:** anithasoma/refined_en_te - **Training Environment:** Google Colab with NVIDIA GPU. - **Fine-Tuning Method:** LoRA + PEFT (Parameter Efficient Fine-Tuning) - **Epochs:** Adjusted based on validation loss. - **Metrics:** BLEU Score, SacreBLEU Score Perplexity, Human Evaluation. ## Evaluation Metrics The model was evaluated using the BLEU and SacreBLEU metrics: - **BLEU Score:** 43.12 - **SacreBLEU Score:** 43.12 ## How to Use You can use this model in Python with the `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("anithasoma/nllb-finetuned-telugu") model = AutoModelForSeq2SeqLM.from_pretrained("anithasoma/nllb-finetuned-telugu") def translate(text): inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) print(translate("Hello, how are you?")) ``` ## Model Card ### Intended Use This model is intended for generating colloquial Telugu translations from English text, improving conversational AI, and enhancing informal communication applications. ### Limitations - May not perform well on formal or domain-specific text. - Can sometimes produce literal rather than context-aware translations. ### License This model is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). ## Contributors Developed by **[anithasoma](https://huggingface.co/anithasoma)** as part of the SAWiT AI Hackathon. --- *For feedback or collaboration, reach out via Hugging Face!* 🚀