Update retrieval_qa_pipeline.py (#2)
Browse files- Update retrieval_qa_pipeline.py (8cf5b0e822033c7d406ca067d6ae6cc9ebde1a91)
Co-authored-by: Pranav Keshav <[email protected]>
- retrieval_qa_pipeline.py +118 -0
retrieval_qa_pipeline.py
CHANGED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# retrieval_qa_pipeline.py
|
| 2 |
+
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain.vectorstores import FAISS
|
| 6 |
+
from langchain.llms import HuggingFacePipeline
|
| 7 |
+
from langchain.chains import RetrievalQA
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
|
| 10 |
+
def load_model_and_tokenizer(model_name: str):
|
| 11 |
+
"""
|
| 12 |
+
Load the pre-trained model and tokenizer from the Hugging Face Hub.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
model_name (str): The Hugging Face repository name of the model.
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
model: The loaded model.
|
| 19 |
+
tokenizer: The loaded tokenizer.
|
| 20 |
+
"""
|
| 21 |
+
print(f"Loading model and tokenizer from {model_name}...")
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 24 |
+
return model, tokenizer
|
| 25 |
+
|
| 26 |
+
def load_dataset_from_hf(dataset_name: str):
|
| 27 |
+
"""
|
| 28 |
+
Load the dataset from the Hugging Face Hub.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
dataset_name (str): The Hugging Face repository name of the dataset.
|
| 32 |
+
|
| 33 |
+
Returns:
|
| 34 |
+
texts (list): The text descriptions from the dataset.
|
| 35 |
+
metadatas (list): Metadata for each text (e.g., upf_code).
|
| 36 |
+
"""
|
| 37 |
+
print(f"Loading dataset from {dataset_name}...")
|
| 38 |
+
dataset = load_dataset(dataset_name)
|
| 39 |
+
texts = dataset["train"]["power_intent_description"]
|
| 40 |
+
metadatas = [{"upf_code": code} for code in dataset["train"]["upf_code"]]
|
| 41 |
+
return texts, metadatas
|
| 42 |
+
|
| 43 |
+
def load_faiss_index(faiss_index_path: str):
|
| 44 |
+
"""
|
| 45 |
+
Load the FAISS index and associated embeddings.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
faiss_index_path (str): Path to the saved FAISS index.
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
vectorstore (FAISS): The FAISS vector store.
|
| 52 |
+
"""
|
| 53 |
+
print(f"Loading FAISS index from {faiss_index_path}...")
|
| 54 |
+
embeddings = HuggingFaceEmbeddings() # Default embeddings
|
| 55 |
+
vectorstore = FAISS.load_local(faiss_index_path, embeddings)
|
| 56 |
+
return vectorstore
|
| 57 |
+
|
| 58 |
+
def build_retrieval_qa_pipeline(model, tokenizer, vectorstore):
|
| 59 |
+
"""
|
| 60 |
+
Build the retrieval-based QA pipeline.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
model: The pre-trained model.
|
| 64 |
+
tokenizer: The tokenizer associated with the model.
|
| 65 |
+
vectorstore (FAISS): The FAISS vector store for retrieval.
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
qa_chain (RetrievalQA): The retrieval-based QA pipeline.
|
| 69 |
+
"""
|
| 70 |
+
print("Building the retrieval-based QA pipeline...")
|
| 71 |
+
hf_pipeline = pipeline(
|
| 72 |
+
"text-generation",
|
| 73 |
+
model=model,
|
| 74 |
+
tokenizer=tokenizer,
|
| 75 |
+
max_length=2048,
|
| 76 |
+
temperature=0.7,
|
| 77 |
+
top_p=0.95,
|
| 78 |
+
repetition_penalty=1.15
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
| 82 |
+
retriever = vectorstore.as_retriever()
|
| 83 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
| 84 |
+
|
| 85 |
+
return qa_chain
|
| 86 |
+
|
| 87 |
+
def main():
|
| 88 |
+
# Replace these names with your model and dataset repo names
|
| 89 |
+
model_name = "username/my_fine_tuned_model"
|
| 90 |
+
dataset_name = "PranavKeshav/upf_code"
|
| 91 |
+
faiss_index_path = "faiss_index"
|
| 92 |
+
|
| 93 |
+
print("Starting pipeline setup...")
|
| 94 |
+
|
| 95 |
+
# Load model and tokenizer
|
| 96 |
+
model, tokenizer = load_model_and_tokenizer(model_name)
|
| 97 |
+
|
| 98 |
+
# Load dataset
|
| 99 |
+
texts, metadatas = load_dataset_from_hf(dataset_name)
|
| 100 |
+
|
| 101 |
+
# Load FAISS index
|
| 102 |
+
vectorstore = load_faiss_index(faiss_index_path)
|
| 103 |
+
|
| 104 |
+
# Build QA pipeline
|
| 105 |
+
qa_chain = build_retrieval_qa_pipeline(model, tokenizer, vectorstore)
|
| 106 |
+
|
| 107 |
+
# Test the pipeline
|
| 108 |
+
print("Pipeline is ready! You can now ask questions.")
|
| 109 |
+
while True:
|
| 110 |
+
query = input("Enter your query (or type 'exit' to quit): ")
|
| 111 |
+
if query.lower() == "exit":
|
| 112 |
+
print("Exiting...")
|
| 113 |
+
break
|
| 114 |
+
response = qa_chain.run(query)
|
| 115 |
+
print(f"Response: {response}")
|
| 116 |
+
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
main()
|