--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-base-finetuned-autext23 results: [] --- # deberta-v3-base-finetuned-autext23 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5603 - Accuracy: 0.8926 - F1: 0.8917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 371 | 0.3067 | 0.8755 | 0.8741 | | 0.2052 | 2.0 | 742 | 0.3418 | 0.8832 | 0.8821 | | 0.2052 | 3.0 | 1113 | 0.3133 | 0.9067 | 0.9063 | | 0.0506 | 4.0 | 1484 | 0.4449 | 0.9006 | 0.9000 | | 0.0506 | 5.0 | 1855 | 0.5603 | 0.8926 | 0.8917 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1