andrejmiscic commited on
Commit
87f46db
·
1 Parent(s): 91962dc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - simcls
6
+ datasets:
7
+ - cnn_dailymail
8
+ ---
9
+
10
+ # SimCLS
11
+
12
+ SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890).
13
+ It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate.
14
+
15
+ This model is the *scorer* trained for summarization of CNN/DailyMail ([paper](https://arxiv.org/abs/1602.06023), [datasets](https://huggingface.co/datasets/cnn_dailymail)). It should be used in conjunction with [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage.
16
+
17
+ ## Usage
18
+
19
+ ```bash
20
+ git clone https://github.com/andrejmiscic/simcls-pytorch.git
21
+ cd simcls-pytorch
22
+ pip3 install torch torchvision torchaudio transformers sentencepiece
23
+ ```
24
+
25
+ ```python
26
+ from src.model import SimCLS, GeneratorType
27
+
28
+ summarizer = SimCLS(generator_type=GeneratorType.Bart,
29
+ generator_path="facebook/bart-large-cnn",
30
+ scorer_path="andrejmiscic/simcls-scorer-cnndm")
31
+
32
+ article = "This is a news article."
33
+ summary = summarizer(article)
34
+ print(summary)
35
+ ```
36
+
37
+ ### Results
38
+
39
+ All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines.
40
+
41
+ | System | Rouge-1 | Rouge-2 | Rouge-L |
42
+ |------------------|----------------------:|----------------------:|----------------------:|
43
+ | BART | 44.16 | 21.28 | 40.90 |
44
+ | **SimCLS paper** | --- | --- | --- |
45
+ | Origin | 44.39 | 21.21 | 41.28 |
46
+ | Min | 33.17 | 11.67 | 30.77 |
47
+ | Max | 54.36 | 28.73 | 50.77 |
48
+ | Random | 43.98 | 20.06 | 40.94 |
49
+ | **SimCLS** | 46.67 | 22.15 | 43.54 |
50
+ | **Our results** | --- | --- | --- |
51
+ | Origin | 44.41, [44.18, 44.63] | 21.05, [20.80, 21.29] | 41.53, [41.30, 41.75] |
52
+ | Min | 33.43, [33.25, 33.62] | 10.97, [10.82, 11.12] | 30.57, [30.40, 30.74] |
53
+ | Max | 53.87, [53.67, 54.08] | 29.72, [29.47, 29.98] | 51.13, [50.92, 51.34] |
54
+ | Random | 43.94, [43.73, 44.16] | 20.09, [19.86, 20.31] | 41.06, [40.85, 41.27] |
55
+ | **SimCLS** | 46.53, [46.32, 46.75] | 22.14, [21.91, 22.37] | 43.56, [43.34, 43.78] |
56
+
57
+ ### Citation of the original work
58
+
59
+ ```bibtex
60
+ @inproceedings{liu-liu-2021-simcls,
61
+ title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization",
62
+ author = "Liu, Yixin and
63
+ Liu, Pengfei",
64
+ booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
65
+ month = aug,
66
+ year = "2021",
67
+ address = "Online",
68
+ publisher = "Association for Computational Linguistics",
69
+ url = "https://aclanthology.org/2021.acl-short.135",
70
+ doi = "10.18653/v1/2021.acl-short.135",
71
+ pages = "1065--1072",
72
+ }
73
+ ```