![amyeroberts's picture](https://cdn-avatars.huggingface.co/v1/production/uploads/1650360288463-noauth.jpeg)
amyeroberts
HF staff
Duplicate from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
e9c76ea
verified
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Convert SigLIP checkpoints from the original repository. | |
URL: https://github.com/google-research/big_vision/tree/main | |
""" | |
import argparse | |
import collections | |
from pathlib import Path | |
import numpy as np | |
import requests | |
import torch | |
from huggingface_hub import hf_hub_download | |
from numpy import load | |
from PIL import Image | |
from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer | |
from transformers.utils import logging | |
logging.set_verbosity_info() | |
logger = logging.get_logger(__name__) | |
model_name_to_checkpoint = { | |
# base checkpoints | |
"siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz", | |
"siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz", | |
"siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz", | |
"siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz", | |
# large checkpoints | |
"siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz", | |
"siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz", | |
# multilingual checkpoint | |
"siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz", | |
# so400m checkpoints | |
"siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz", | |
} | |
model_name_to_image_size = { | |
"siglip-base-patch16-224": 224, | |
"siglip-base-patch16-256": 256, | |
"siglip-base-patch16-384": 384, | |
"siglip-base-patch16-512": 512, | |
"siglip-large-patch16-256": 256, | |
"siglip-large-patch16-384": 384, | |
"siglip-base-patch16-256-i18n": 256, | |
"siglip-so400m-patch14-384": 384, | |
} | |
def get_siglip_config(model_name): | |
config = SiglipConfig() | |
vocab_size = 250000 if "i18n" in model_name else 32000 | |
image_size = model_name_to_image_size[model_name] | |
patch_size = 16 if "patch16" in model_name else 14 | |
# size of the architecture | |
config.vision_config.image_size = image_size | |
config.vision_config.patch_size = patch_size | |
config.text_config.vocab_size = vocab_size | |
if "base" in model_name: | |
pass | |
elif "large" in model_name: | |
config.text_config.hidden_size = 1024 | |
config.text_config.intermediate_size = 4096 | |
config.text_config.num_hidden_layers = 24 | |
config.text_config.num_attention_heads = 16 | |
config.vision_config.hidden_size = 1024 | |
config.vision_config.intermediate_size = 4096 | |
config.vision_config.num_hidden_layers = 24 | |
config.vision_config.num_attention_heads = 16 | |
elif "so400m" in model_name: | |
config.text_config.hidden_size = 1152 | |
config.text_config.intermediate_size = 4304 | |
config.text_config.num_hidden_layers = 27 | |
config.text_config.num_attention_heads = 16 | |
config.vision_config.hidden_size = 1152 | |
config.vision_config.intermediate_size = 4304 | |
config.vision_config.num_hidden_layers = 27 | |
config.vision_config.num_attention_heads = 16 | |
else: | |
raise ValueError("Model not supported") | |
return config | |
def create_rename_keys(config): | |
rename_keys = [] | |
# fmt: off | |
# vision encoder | |
rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight")) | |
rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias")) | |
rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight")) | |
for i in range(config.vision_config.num_hidden_layers): | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight")) | |
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias")) | |
rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight")) | |
rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias")) | |
rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe")) | |
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight")) | |
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias")) | |
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight")) | |
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias")) | |
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight")) | |
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias")) | |
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight")) | |
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias")) | |
# text encoder | |
rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight")) | |
rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight")) | |
for i in range(config.text_config.num_hidden_layers): | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight")) | |
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias")) | |
rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight")) | |
rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias")) | |
rename_keys.append(("params/txt/head/kernel", "text_model.head.weight")) | |
rename_keys.append(("params/txt/head/bias", "text_model.head.bias")) | |
# learned temperature and bias | |
rename_keys.append(("params/t", "logit_scale")) | |
rename_keys.append(("params/b", "logit_bias")) | |
# fmt: on | |
return rename_keys | |
def rename_key(dct, old, new, config): | |
val = dct.pop(old) | |
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new: | |
val = val.reshape(-1, config.vision_config.hidden_size) | |
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new: | |
val = val.reshape(-1, config.text_config.hidden_size) | |
if "patch_embedding.weight" in new: | |
val = val.transpose(3, 2, 0, 1) | |
elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new: | |
val = val.T | |
if "position_embedding" in new and "vision" in new: | |
val = val.reshape(-1, config.vision_config.hidden_size) | |
if "position_embedding" in new and "text" in new: | |
val = val.reshape(-1, config.text_config.hidden_size) | |
if new.endswith("bias"): | |
val = val.reshape(-1) | |
dct[new] = torch.from_numpy(val) | |
def read_in_q_k_v_head(state_dict, config): | |
# read in individual input projection layers | |
key_proj_weight = ( | |
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel") | |
.reshape(-1, config.vision_config.hidden_size) | |
.T | |
) | |
key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1) | |
value_proj_weight = ( | |
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel") | |
.reshape(-1, config.vision_config.hidden_size) | |
.T | |
) | |
value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1) | |
query_proj_weight = ( | |
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel") | |
.reshape(-1, config.vision_config.hidden_size) | |
.T | |
) | |
query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1) | |
# next, add them to the state dict as a single matrix + vector | |
state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy( | |
np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0) | |
) | |
state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy( | |
np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0) | |
) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
image = Image.open(requests.get(url, stream=True).raw) | |
return image | |
def flatten_nested_dict(params, parent_key="", sep="/"): | |
items = [] | |
for k, v in params.items(): | |
new_key = parent_key + sep + k if parent_key else k | |
if isinstance(v, collections.abc.MutableMapping): | |
items.extend(flatten_nested_dict(v, new_key, sep=sep).items()) | |
else: | |
items.append((new_key, v)) | |
return dict(items) | |
def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False): | |
""" | |
Copy/paste/tweak model's weights to our SigLIP structure. | |
""" | |
# define default SigLIP configuration | |
config = get_siglip_config(model_name) | |
# get checkpoint | |
checkpoint = model_name_to_checkpoint[model_name] | |
# get vocab file | |
if "i18n" in model_name: | |
vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model" | |
else: | |
vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model" | |
# load original state dict | |
data = load(checkpoint) | |
state_dict = flatten_nested_dict(data) | |
# remove and rename some keys | |
rename_keys = create_rename_keys(config) | |
for src, dest in rename_keys: | |
rename_key(state_dict, src, dest, config) | |
# qkv matrices of attention pooling head need special treatment | |
read_in_q_k_v_head(state_dict, config) | |
# load HuggingFace model | |
model = SiglipModel(config).eval() | |
model.load_state_dict(state_dict) | |
# create processor | |
# important: make tokenizer not return attention_mask since original one doesn't require it | |
image_size = config.vision_config.image_size | |
size = {"height": image_size, "width": image_size} | |
image_processor = SiglipImageProcessor(size=size) | |
tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"]) | |
processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer) | |
# verify on dummy images and texts | |
url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg" | |
image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB") | |
url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg" | |
image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB") | |
texts = ["an apple", "a picture of an apple"] | |
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length") | |
# verify input_ids against original ones | |
if image_size == 224: | |
filename = "siglip_pixel_values.pt" | |
elif image_size == 256: | |
filename = "siglip_pixel_values_256.pt" | |
elif image_size == 384: | |
filename = "siglip_pixel_values_384.pt" | |
elif image_size == 512: | |
filename = "siglip_pixel_values_512.pt" | |
else: | |
raise ValueError("Image size not supported") | |
filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset") | |
original_pixel_values = torch.load(filepath) | |
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset") | |
original_input_ids = torch.load(filepath) | |
if "i18n" not in model_name: | |
assert inputs.input_ids.tolist() == original_input_ids.tolist() | |
print("Mean of original pixel values:", original_pixel_values.mean()) | |
print("Mean of new pixel values:", inputs.pixel_values.mean()) | |
# note: we're testing with original pixel values here since we don't have exact pixel values | |
with torch.no_grad(): | |
outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values) | |
# with torch.no_grad(): | |
# outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values) | |
print(outputs.logits_per_image[:3, :3]) | |
probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities | |
print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") | |
print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'") | |
if verify_logits: | |
if model_name == "siglip-base-patch16-224": | |
expected_slice = torch.tensor( | |
[[-2.9621, -2.1672], [-0.2713, 0.2910]], | |
) | |
elif model_name == "siglip-base-patch16-256": | |
expected_slice = torch.tensor( | |
[[-3.1146, -1.9894], [-0.7312, 0.6387]], | |
) | |
elif model_name == "siglip-base-patch16-384": | |
expected_slice = torch.tensor( | |
[[-2.8098, -2.1891], [-0.4242, 0.4102]], | |
) | |
elif model_name == "siglip-base-patch16-512": | |
expected_slice = torch.tensor( | |
[[-2.7899, -2.2668], [-0.4295, -0.0735]], | |
) | |
elif model_name == "siglip-large-patch16-256": | |
expected_slice = torch.tensor( | |
[[-1.5827, -0.5801], [-0.9153, 0.1363]], | |
) | |
elif model_name == "siglip-large-patch16-384": | |
expected_slice = torch.tensor( | |
[[-2.1523, -0.2899], [-0.2959, 0.7884]], | |
) | |
elif model_name == "siglip-so400m-patch14-384": | |
expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]]) | |
elif model_name == "siglip-base-patch16-256-i18n": | |
expected_slice = torch.tensor( | |
[[-0.9064, 0.1073], [-0.0299, 0.5304]], | |
) | |
assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4) | |
print("Looks ok!") | |
if pytorch_dump_folder_path is not None: | |
Path(pytorch_dump_folder_path).mkdir(exist_ok=True) | |
print(f"Saving model {model_name} to {pytorch_dump_folder_path}") | |
model.save_pretrained(pytorch_dump_folder_path) | |
print(f"Saving processor to {pytorch_dump_folder_path}") | |
processor.save_pretrained(pytorch_dump_folder_path) | |
if push_to_hub: | |
model.push_to_hub(f"nielsr/{model_name}") | |
processor.push_to_hub(f"nielsr/{model_name}") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--model_name", | |
default="siglip-base-patch16-224", | |
type=str, | |
choices=model_name_to_checkpoint.keys(), | |
help="Name of the model you'd like to convert.", | |
) | |
parser.add_argument( | |
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." | |
) | |
parser.add_argument( | |
"--verify_logits", | |
action="store_false", | |
help="Whether to verify logits against the original implementation.", | |
) | |
parser.add_argument( | |
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." | |
) | |
args = parser.parse_args() | |
convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub) | |