luis-espinosa
commited on
Upload trained SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +312 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +47 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: Ofgem secures £450k from GDF SUEZ/IPM for environmental obligation failure
|
9 |
+
- text: Forwarder ICL opens in Rotterdam
|
10 |
+
- text: Ofgem issues three final orders for £15 million in unpaid Renewables Obligation
|
11 |
+
and Feed-in Tariff payments
|
12 |
+
- text: DP world partners with China’s Zhejiang Seaport Group
|
13 |
+
- text: Ofgem completes investigation into EDF Energy networks - finds no breach of
|
14 |
+
obligations
|
15 |
+
metrics:
|
16 |
+
- accuracy
|
17 |
+
pipeline_tag: text-classification
|
18 |
+
library_name: setfit
|
19 |
+
inference: true
|
20 |
+
base_model: infgrad/stella-base-en-v2
|
21 |
+
model-index:
|
22 |
+
- name: SetFit with infgrad/stella-base-en-v2
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: text-classification
|
26 |
+
name: Text Classification
|
27 |
+
dataset:
|
28 |
+
name: Unknown
|
29 |
+
type: unknown
|
30 |
+
split: test
|
31 |
+
metrics:
|
32 |
+
- type: accuracy
|
33 |
+
value: 0.7162162162162162
|
34 |
+
name: Accuracy
|
35 |
+
---
|
36 |
+
|
37 |
+
# SetFit with infgrad/stella-base-en-v2
|
38 |
+
|
39 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [infgrad/stella-base-en-v2](https://huggingface.co/infgrad/stella-base-en-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
40 |
+
|
41 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
42 |
+
|
43 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
44 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
45 |
+
|
46 |
+
## Model Details
|
47 |
+
|
48 |
+
### Model Description
|
49 |
+
- **Model Type:** SetFit
|
50 |
+
- **Sentence Transformer body:** [infgrad/stella-base-en-v2](https://huggingface.co/infgrad/stella-base-en-v2)
|
51 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
52 |
+
- **Maximum Sequence Length:** 512 tokens
|
53 |
+
- **Number of Classes:** 42 classes
|
54 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
55 |
+
<!-- - **Language:** Unknown -->
|
56 |
+
<!-- - **License:** Unknown -->
|
57 |
+
|
58 |
+
### Model Sources
|
59 |
+
|
60 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
61 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
62 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
63 |
+
|
64 |
+
### Model Labels
|
65 |
+
| Label | Examples |
|
66 |
+
|:----------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
67 |
+
| ['supply'] | <ul><li>'Consumer Electronics Supply Chain Strain: Apple Faces Delays in iPhone Production'</li><li>'Airline Supply Chain Struggles: Delta Airlines Faces Fuel Supply Issues'</li><li>'Construction Industry Supply Chain Issues: Concrete Shortages Delay Major Projects'</li></ul> |
|
68 |
+
| ['part'] | <ul><li>'Tide partners with Connect Earth to help SMEs reach Net Zero'</li><li>'Wisk, Archer and Boeing settle litigation and chart the future'</li><li>'Live Oak Bank Launches First Embedded Banking Partnership'</li></ul> |
|
69 |
+
| ['objs'] | <ul><li>'BenevolentAI to participate in Goldman Sachs 45th Annual Global Healthcare Conference'</li><li>'Thames becomes first UK utility to join refugee employment scheme'</li><li>'Ofgem publishes 2017 annual iteration process for energy network price controls'</li></ul> |
|
70 |
+
| ['funding'] | <ul><li>'Ethiopian Airlines secures financing for two 777Fs'</li><li>'Ofwat awards £5.8m to 44 network innovation projects'</li><li>'Clean energy in rural America gets another big boost of federal funding'</li></ul> |
|
71 |
+
| ['c-change'] | <ul><li>'Prospector Metals Corp.: Prospector Appoints Monty Sutton as CFO'</li><li>'Qatar Airways appoints new head of cargo'</li><li>'On the move | Eon shakes up board; former Southern Water CEO becomes chair of consultancy'</li></ul> |
|
72 |
+
| ['innov'] | <ul><li>'Alaska Airlines Invests in New World-class Training Facility'</li><li>'Syngenta Group: Syngenta opens rights to genome-editing and breeding technologies to boost agricultural innovation'</li><li>'DHL Global Forwarding adds chatbot to customer portal'</li></ul> |
|
73 |
+
| ['market-decline'] | <ul><li>'Media Industry Struggles: Print Advertising Revenues Continue to Decline Year Over Year'</li><li>'Pharmaceutical Market Decline: Generic Drug Prices Continue to Fall, Hitting Profits'</li><li>'Construction Industry Slowdown: New Housing Starts Decline Amid Rising Interest Rates'</li></ul> |
|
74 |
+
| ['m&a'] | <ul><li>'CMA CGM completes Bolloré Logistics acquisition'</li><li>'Three NY offshore wind projects unravel after GE scraps turbine plans'</li><li>'Centrica asset sales & the current market environment'</li></ul> |
|
75 |
+
| ['new-prod'] | <ul><li>'Airbus Unveils New Stealthy Loyal Wingman Concept'</li><li>'Hawaiian Airlines Previews New Boeing 787-9 Dreamliner'</li><li>'Embraer boosts comfort and safety with the Phenom 100EX'</li></ul> |
|
76 |
+
| ['c-mention'] | <ul><li>'Dame Mary Archer and ex-EDF nuclear boss join DESNZ board - Utility Week'</li><li>'Lok Sabha Elections 2024: Rahul Gandhi Comfortably Leads In Wayanad, Raebareli'</li><li>'Steve Smith Ofgem Senior Partner Local Grids and RPI-X@20 - statement'</li></ul> |
|
77 |
+
| ['awards'] | <ul><li>'Best in Show: Local Artisan Wins Craft Fair Top Prize'</li><li>'Frankfurt high-flier wins IATA talent competition'</li><li>"Best International Film: 'Parasite' Takes Home the Oscar"</li></ul> |
|
78 |
+
| ['regulatory'] | <ul><li>'Ofgem’s response to National Grid’s proposed network upgrade to connect the new Hinkley Point C nuclear power station'</li><li>'Ofgem appoints Utilita Energy to take on customers of Eversmart Energy'</li><li>'Ofgem response to UK power failures'</li></ul> |
|
79 |
+
| ['new-prod', 'objs'] | <ul><li>'Severn Trent launches multi-million pound scheme to reduce storm overflow spills'</li><li>'Drax gets planning go ahead for £2bn BECCS project'</li><li>'National Grid begins work on substation for major EV hub'</li></ul> |
|
80 |
+
| ['market-entry'] | <ul><li>'Aer Lingus to Launch Las Vegas Flights in Fall 2024'</li><li>'Air Canada Announces Major Expansion Of Flight Network To India For Winter 2024-25'</li><li>'Menzies Aviation secures new Heathrow cargo contracts'</li></ul> |
|
81 |
+
| ['esg'] | <ul><li>'BP Announces Major Investment in Renewable Energy Projects'</li><li>"Apple's Environmental Progress Report Highlights Carbon Footprint Reduction"</li><li>'Silk Way West joins the UN’s Global Compact Initiative'</li></ul> |
|
82 |
+
| ['new-prod', 'innov'] | <ul><li>'World’s largest direct air capture plant starts sucking CO2 from the sky'</li><li>'Airbus advances development of A350F'</li></ul> |
|
83 |
+
| ['market-growth'] | <ul><li>'Power prices tumble amid mild winter and record renewable output'</li><li>'WestJet Cargo network branches out'</li><li>'LNG contract value swinging with gas & oil markets'</li></ul> |
|
84 |
+
| ['market-exit'] | <ul><li>'El Al Israel Airlines to Stop Flying to Dublin, Marrakesh'</li><li>'Energy Exit: BP Sells Off U.S. Oil Assets as Part of Green Transition'</li><li>'Retail Shakeup: J.C. Penney Closes All Stores Following Bankruptcy Filing'</li></ul> |
|
85 |
+
| ['market-entry', 'new-prod'] | <ul><li>'Delta Resuming Tel Aviv Flights From June 7'</li><li>'DHL Air sets up MRO facility at East Midlands Airport'</li><li>'TAAG Angola Airlines adds Luanda-Lisbon belly capacity'</li></ul> |
|
86 |
+
| ['layoffs'] | <ul><li>'FedEx offers pilots $250,000 to leave ‘overstaffed’ cargo company'</li><li>'Fashion Retailer Announces Layoffs Amid Changing Consumer Trends'</li><li>'Media Company Layoffs: CNN Cuts Jobs as Part of Strategic Shift'</li></ul> |
|
87 |
+
| ['regulatory', 'objs'] | <ul><li>'Energy minister announces post-Brexit energy trading boost'</li><li>'Ofgem gives go-ahead to Orkney transmission link subject to conditions'</li></ul> |
|
88 |
+
| ['hiring'] | <ul><li>'Logistics Company Hiring Drivers to Meet Increased Demand'</li><li>'Octopus seeks 4,000 new recruits to tackle heat pump rollout'</li><li>'Financial Services Company Expands Team with New Analysts'</li></ul> |
|
89 |
+
| ['m&a', 'part'] | <ul><li>'UPS to Replace FedEx as USPS Primary Air Cargo Provider'</li></ul> |
|
90 |
+
| ['regulatory', 'c-change'] | <ul><li>'Water companies ordered to upgrade 140 wastewater treatment works'</li><li>'Delay to SGN’s hydrogen trial ‘strengthens case’ for taking heating decision now'</li></ul> |
|
91 |
+
| ['market-entry', 'part'] | <ul><li>'Matador AI Launches International Expansion Through Exclusive Canadian Partnership with AutoSync'</li><li>'Delta Air Lines Resuming Flights To Tel Aviv, Israel'</li></ul> |
|
92 |
+
| ['innov', 'new-prod'] | <ul><li>'SmartAir upgrades real-time safety awareness for UAS and eVTOL'</li><li>'Emirates gets ready for SAF at Schiphol'</li></ul> |
|
93 |
+
| ['new-prod', 'market-entry'] | <ul><li>'Maersk Air Cargo to trial new UK-China route'</li></ul> |
|
94 |
+
| ['objs', 'market-growth'] | <ul><li>'Sonoco Products Company: Sonoco To Implement Further Price Increase for Core Board and Paperboard in Europe'</li><li>'1Password Strengthens EMEA Presence with Significant Business Growth, Key Customer Wins, and Region-Specific Product Capabilities'</li></ul> |
|
95 |
+
| ['c-change', 'c-mention'] | <ul><li>'Government selects Martin Cave as preferred candidate to be next Ofgem chairman'</li></ul> |
|
96 |
+
| ['new-prod', 'funding'] | <ul><li>'Eon to install UK’s largest roof-mounted solar project'</li><li>'US Steel plant in Indiana to host a $150M carbon capture experiment'</li></ul> |
|
97 |
+
| ['part', 'objs'] | <ul><li>'New supplier is appointed for customers of the Team Group of Companies Limited'</li><li>'Ofgem appoints British Gas to take on customers of PfP Energy and MoneyPlus Energy'</li><li>'Ofgem chooses preferred bidder for link to Race Bank Wind Farm'</li></ul> |
|
98 |
+
| ['funding', 'objs'] | <ul><li>'Ofgem boosts investment for Britain’s electricity networks'</li><li>'Ofgem announces £17 billion new investment package and reduces pressure on customer bills'</li></ul> |
|
99 |
+
| ['new-prod', 'm&a'] | <ul><li>'Mexicana de Aviación orders 20 Embraer E2 aircraft to enhance fleet and connectivity'</li></ul> |
|
100 |
+
| ['objs', 'funding'] | <ul><li>"Google's investment in Singapore reaches $5B, underpinned by data center expansion"</li></ul> |
|
101 |
+
| ['objs', 'new-prod'] | <ul><li>'Korean Air Orders 33 Airbus A350s, including -1000s and -900s'</li></ul> |
|
102 |
+
| ['c-mention', 'c-change'] | <ul><li>"Ofgem welcomes DECC's announcement of David Gray as new Chairman"</li></ul> |
|
103 |
+
| ['m&a', 'objs'] | <ul><li>'Carnival Corporation & plc: Carnival Corporation to Strategically Align Portfolio and Absorb P&O Cruises Australia into Carnival Cruise Line'</li></ul> |
|
104 |
+
| ['new-prod', 'market-growth'] | <ul><li>'Minnesota’s biggest solar project will help replace a huge coal plant'</li></ul> |
|
105 |
+
| ['market-decline', 'supply'] | <ul><li>'Qantas Freight makes progress but backlog unlikely to be cleared this week'</li></ul> |
|
106 |
+
| ['m&a', 'market-exit'] | <ul><li>'Korean Air poised to sell off Asiana cargo business'</li><li>'Air France-KLM Group Reduces Stake in Kenya Airways'</li></ul> |
|
107 |
+
| ['objs', 'c-change'] | <ul><li>'Ofgem confirms approach to boosting green and smart investment in local grids'</li></ul> |
|
108 |
+
| ['market-entry', 'market-growth'] | <ul><li>'Emirates expands e-commerce service to Kuwait'</li><li>'Air Canada to Expand Service from Ottawa Year Round'</li></ul> |
|
109 |
+
|
110 |
+
## Evaluation
|
111 |
+
|
112 |
+
### Metrics
|
113 |
+
| Label | Accuracy |
|
114 |
+
|:--------|:---------|
|
115 |
+
| **all** | 0.7162 |
|
116 |
+
|
117 |
+
## Uses
|
118 |
+
|
119 |
+
### Direct Use for Inference
|
120 |
+
|
121 |
+
First install the SetFit library:
|
122 |
+
|
123 |
+
```bash
|
124 |
+
pip install setfit
|
125 |
+
```
|
126 |
+
|
127 |
+
Then you can load this model and run inference.
|
128 |
+
|
129 |
+
```python
|
130 |
+
from setfit import SetFitModel
|
131 |
+
|
132 |
+
# Download from the 🤗 Hub
|
133 |
+
model = SetFitModel.from_pretrained("amplyfi/all-labels")
|
134 |
+
# Run inference
|
135 |
+
preds = model("Forwarder ICL opens in Rotterdam")
|
136 |
+
```
|
137 |
+
|
138 |
+
<!--
|
139 |
+
### Downstream Use
|
140 |
+
|
141 |
+
*List how someone could finetune this model on their own dataset.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Out-of-Scope Use
|
146 |
+
|
147 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
148 |
+
-->
|
149 |
+
|
150 |
+
<!--
|
151 |
+
## Bias, Risks and Limitations
|
152 |
+
|
153 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
154 |
+
-->
|
155 |
+
|
156 |
+
<!--
|
157 |
+
### Recommendations
|
158 |
+
|
159 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
160 |
+
-->
|
161 |
+
|
162 |
+
## Training Details
|
163 |
+
|
164 |
+
### Training Set Metrics
|
165 |
+
| Training set | Min | Median | Max |
|
166 |
+
|:-------------|:----|:--------|:----|
|
167 |
+
| Word count | 4 | 10.0203 | 30 |
|
168 |
+
|
169 |
+
| Label | Training Sample Count |
|
170 |
+
|:----------------------------------|:----------------------|
|
171 |
+
| ['awards'] | 17 |
|
172 |
+
| ['c-change', 'c-mention'] | 1 |
|
173 |
+
| ['c-change'] | 64 |
|
174 |
+
| ['c-mention', 'c-change'] | 1 |
|
175 |
+
| ['c-mention'] | 9 |
|
176 |
+
| ['esg'] | 16 |
|
177 |
+
| ['funding', 'objs'] | 2 |
|
178 |
+
| ['funding'] | 46 |
|
179 |
+
| ['hiring'] | 17 |
|
180 |
+
| ['innov', 'new-prod'] | 2 |
|
181 |
+
| ['innov'] | 16 |
|
182 |
+
| ['layoffs'] | 16 |
|
183 |
+
| ['m&a', 'market-exit'] | 2 |
|
184 |
+
| ['m&a', 'objs'] | 1 |
|
185 |
+
| ['m&a', 'part'] | 1 |
|
186 |
+
| ['m&a'] | 57 |
|
187 |
+
| ['market-decline', 'supply'] | 1 |
|
188 |
+
| ['market-decline'] | 19 |
|
189 |
+
| ['market-entry', 'market-growth'] | 2 |
|
190 |
+
| ['market-entry', 'new-prod'] | 5 |
|
191 |
+
| ['market-entry', 'part'] | 2 |
|
192 |
+
| ['market-entry'] | 46 |
|
193 |
+
| ['market-exit'] | 19 |
|
194 |
+
| ['market-growth'] | 31 |
|
195 |
+
| ['new-prod', 'funding'] | 2 |
|
196 |
+
| ['new-prod', 'innov'] | 2 |
|
197 |
+
| ['new-prod', 'm&a'] | 1 |
|
198 |
+
| ['new-prod', 'market-entry'] | 1 |
|
199 |
+
| ['new-prod', 'market-growth'] | 1 |
|
200 |
+
| ['new-prod', 'objs'] | 3 |
|
201 |
+
| ['new-prod'] | 116 |
|
202 |
+
| ['objs', 'c-change'] | 1 |
|
203 |
+
| ['objs', 'funding'] | 1 |
|
204 |
+
| ['objs', 'market-growth'] | 2 |
|
205 |
+
| ['objs', 'new-prod'] | 1 |
|
206 |
+
| ['objs'] | 42 |
|
207 |
+
| ['part', 'objs'] | 5 |
|
208 |
+
| ['part'] | 99 |
|
209 |
+
| ['regulatory', 'c-change'] | 2 |
|
210 |
+
| ['regulatory', 'objs'] | 2 |
|
211 |
+
| ['regulatory'] | 191 |
|
212 |
+
| ['supply'] | 20 |
|
213 |
+
|
214 |
+
### Training Hyperparameters
|
215 |
+
- batch_size: (16, 16)
|
216 |
+
- num_epochs: (3, 3)
|
217 |
+
- max_steps: -1
|
218 |
+
- sampling_strategy: oversampling
|
219 |
+
- num_iterations: 5
|
220 |
+
- body_learning_rate: (2e-05, 2e-05)
|
221 |
+
- head_learning_rate: 2e-05
|
222 |
+
- loss: CosineSimilarityLoss
|
223 |
+
- distance_metric: cosine_distance
|
224 |
+
- margin: 0.25
|
225 |
+
- end_to_end: False
|
226 |
+
- use_amp: False
|
227 |
+
- warmup_proportion: 0.1
|
228 |
+
- l2_weight: 0.01
|
229 |
+
- seed: 42
|
230 |
+
- eval_max_steps: -1
|
231 |
+
- load_best_model_at_end: False
|
232 |
+
|
233 |
+
### Training Results
|
234 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
235 |
+
|:------:|:----:|:-------------:|:---------------:|
|
236 |
+
| 0.0018 | 1 | 0.2357 | - |
|
237 |
+
| 0.0903 | 50 | 0.2131 | - |
|
238 |
+
| 0.1805 | 100 | 0.1775 | - |
|
239 |
+
| 0.2708 | 150 | 0.1474 | - |
|
240 |
+
| 0.3610 | 200 | 0.0981 | - |
|
241 |
+
| 0.4513 | 250 | 0.0772 | - |
|
242 |
+
| 0.5415 | 300 | 0.063 | - |
|
243 |
+
| 0.6318 | 350 | 0.063 | - |
|
244 |
+
| 0.7220 | 400 | 0.0539 | - |
|
245 |
+
| 0.8123 | 450 | 0.0448 | - |
|
246 |
+
| 0.9025 | 500 | 0.0494 | - |
|
247 |
+
| 0.9928 | 550 | 0.0395 | - |
|
248 |
+
| 1.0830 | 600 | 0.0319 | - |
|
249 |
+
| 1.1733 | 650 | 0.0316 | - |
|
250 |
+
| 1.2635 | 700 | 0.0297 | - |
|
251 |
+
| 1.3538 | 750 | 0.0237 | - |
|
252 |
+
| 1.4440 | 800 | 0.0267 | - |
|
253 |
+
| 1.5343 | 850 | 0.0158 | - |
|
254 |
+
| 1.6245 | 900 | 0.0273 | - |
|
255 |
+
| 1.7148 | 950 | 0.0217 | - |
|
256 |
+
| 1.8051 | 1000 | 0.0173 | - |
|
257 |
+
| 1.8953 | 1050 | 0.0159 | - |
|
258 |
+
| 1.9856 | 1100 | 0.0196 | - |
|
259 |
+
| 2.0758 | 1150 | 0.0123 | - |
|
260 |
+
| 2.1661 | 1200 | 0.0102 | - |
|
261 |
+
| 2.2563 | 1250 | 0.0135 | - |
|
262 |
+
| 2.3466 | 1300 | 0.0121 | - |
|
263 |
+
| 2.4368 | 1350 | 0.0091 | - |
|
264 |
+
| 2.5271 | 1400 | 0.0139 | - |
|
265 |
+
| 2.6173 | 1450 | 0.0119 | - |
|
266 |
+
| 2.7076 | 1500 | 0.0069 | - |
|
267 |
+
| 2.7978 | 1550 | 0.008 | - |
|
268 |
+
| 2.8881 | 1600 | 0.0081 | - |
|
269 |
+
| 2.9783 | 1650 | 0.0072 | - |
|
270 |
+
|
271 |
+
### Framework Versions
|
272 |
+
- Python: 3.10.12
|
273 |
+
- SetFit: 1.1.0
|
274 |
+
- Sentence Transformers: 3.3.1
|
275 |
+
- Transformers: 4.42.2
|
276 |
+
- PyTorch: 2.5.1+cu124
|
277 |
+
- Datasets: 3.1.0
|
278 |
+
- Tokenizers: 0.19.1
|
279 |
+
|
280 |
+
## Citation
|
281 |
+
|
282 |
+
### BibTeX
|
283 |
+
```bibtex
|
284 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
285 |
+
doi = {10.48550/ARXIV.2209.11055},
|
286 |
+
url = {https://arxiv.org/abs/2209.11055},
|
287 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
288 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
289 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
290 |
+
publisher = {arXiv},
|
291 |
+
year = {2022},
|
292 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
293 |
+
}
|
294 |
+
```
|
295 |
+
|
296 |
+
<!--
|
297 |
+
## Glossary
|
298 |
+
|
299 |
+
*Clearly define terms in order to be accessible across audiences.*
|
300 |
+
-->
|
301 |
+
|
302 |
+
<!--
|
303 |
+
## Model Card Authors
|
304 |
+
|
305 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
306 |
+
-->
|
307 |
+
|
308 |
+
<!--
|
309 |
+
## Model Card Contact
|
310 |
+
|
311 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
312 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "infgrad/stella-base-en-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.42.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.42.2",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"['awards']",
|
5 |
+
"['c-change', 'c-mention']",
|
6 |
+
"['c-change']",
|
7 |
+
"['c-mention', 'c-change']",
|
8 |
+
"['c-mention']",
|
9 |
+
"['esg']",
|
10 |
+
"['funding', 'objs']",
|
11 |
+
"['funding']",
|
12 |
+
"['hiring']",
|
13 |
+
"['innov', 'new-prod']",
|
14 |
+
"['innov']",
|
15 |
+
"['layoffs']",
|
16 |
+
"['m&a', 'market-exit']",
|
17 |
+
"['m&a', 'objs']",
|
18 |
+
"['m&a', 'part']",
|
19 |
+
"['m&a']",
|
20 |
+
"['market-decline', 'supply']",
|
21 |
+
"['market-decline']",
|
22 |
+
"['market-entry', 'market-growth']",
|
23 |
+
"['market-entry', 'new-prod']",
|
24 |
+
"['market-entry', 'part']",
|
25 |
+
"['market-entry']",
|
26 |
+
"['market-exit']",
|
27 |
+
"['market-growth']",
|
28 |
+
"['new-prod', 'funding']",
|
29 |
+
"['new-prod', 'innov']",
|
30 |
+
"['new-prod', 'm&a']",
|
31 |
+
"['new-prod', 'market-entry']",
|
32 |
+
"['new-prod', 'market-growth']",
|
33 |
+
"['new-prod', 'objs']",
|
34 |
+
"['new-prod']",
|
35 |
+
"['objs', 'c-change']",
|
36 |
+
"['objs', 'funding']",
|
37 |
+
"['objs', 'market-growth']",
|
38 |
+
"['objs', 'new-prod']",
|
39 |
+
"['objs']",
|
40 |
+
"['part', 'objs']",
|
41 |
+
"['part']",
|
42 |
+
"['regulatory', 'c-change']",
|
43 |
+
"['regulatory', 'objs']",
|
44 |
+
"['regulatory']",
|
45 |
+
"['supply']"
|
46 |
+
]
|
47 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27f740e3083cd98f982466f1e5c5d5dd288bc177075cb2f7fb28f9961597c898
|
3 |
+
size 437951328
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3623a97dbeef8fcacd32a76661b1665e894d01721c7874e5269e0d9e6fd1d20f
|
3 |
+
size 264775
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|