File size: 4,025 Bytes
ec525ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6b8eb2
 
 
 
ec525ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6b8eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec525ac
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: es_fi_all_quy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# es_fi_all_quy

This model is a fine-tuned version of [nouman-10/es_fi_all_quy](https://huggingface.co/nouman-10/es_fi_all_quy) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4691
- Bleu: 1.3097
- Chrf: 33.573
- Gen Len: 42.0221

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Chrf    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:-------:|
| 0.2653        | 0.09  | 1000  | 0.4870          | 1.3376 | 32.1158 | 43.001  |
| 0.2668        | 0.17  | 2000  | 0.4826          | 1.3753 | 32.002  | 46.505  |
| 0.2567        | 0.26  | 3000  | 0.4820          | 1.2717 | 31.9404 | 46.7274 |
| 0.2561        | 0.34  | 4000  | 0.4825          | 1.4256 | 32.4758 | 41.7274 |
| 0.2618        | 0.43  | 5000  | 0.4850          | 1.6935 | 33.2306 | 37.2012 |
| 0.2705        | 0.51  | 6000  | 0.4723          | 1.372  | 32.4431 | 46.84   |
| 0.2681        | 0.6   | 7000  | 0.4758          | 1.4419 | 32.8507 | 45.6016 |
| 0.2629        | 0.68  | 8000  | 0.4737          | 1.4636 | 33.3288 | 40.0382 |
| 0.2773        | 0.77  | 9000  | 0.4715          | 1.2296 | 33.1241 | 41.502  |
| 0.2702        | 0.85  | 10000 | 0.4663          | 1.2579 | 32.8273 | 44.9034 |
| 0.2683        | 0.94  | 11000 | 0.4694          | 1.6207 | 32.8479 | 42.3964 |
| 0.259         | 1.02  | 12000 | 0.4766          | 1.4934 | 32.6413 | 41.0815 |
| 0.2537        | 1.11  | 13000 | 0.4713          | 1.7586 | 33.3814 | 39.9638 |
| 0.2516        | 1.19  | 14000 | 0.4724          | 1.593  | 33.4105 | 41.832  |
| 0.2574        | 1.28  | 15000 | 0.4749          | 1.3373 | 33.3664 | 42.3662 |
| 0.2523        | 1.37  | 16000 | 0.4701          | 1.1924 | 32.6157 | 42.7706 |
| 0.2462        | 1.45  | 17000 | 0.4710          | 1.5688 | 33.5992 | 40.5282 |
| 0.2513        | 1.54  | 18000 | 0.4723          | 1.2722 | 32.1578 | 47.4225 |
| 0.2504        | 1.62  | 19000 | 0.4728          | 1.3897 | 32.6709 | 40.8893 |
| 0.2502        | 1.71  | 20000 | 0.4714          | 1.5999 | 33.6673 | 41.5362 |
| 0.2434        | 1.79  | 21000 | 0.4715          | 1.9393 | 33.6971 | 40.8944 |
| 0.2483        | 1.88  | 22000 | 0.4688          | 1.8308 | 34.1117 | 37.7565 |
| 0.2435        | 1.96  | 23000 | 0.4693          | 1.8643 | 34.5409 | 38.6237 |
| 0.2377        | 2.05  | 24000 | 0.4702          | 1.6217 | 33.6401 | 40.4779 |
| 0.235         | 2.13  | 25000 | 0.4707          | 1.5441 | 33.588  | 39.8974 |
| 0.2345        | 2.22  | 26000 | 0.4710          | 2.0248 | 33.7469 | 37.2535 |
| 0.2423        | 2.3   | 27000 | 0.4691          | 1.9699 | 33.4757 | 37.9889 |
| 0.2388        | 2.39  | 28000 | 0.4669          | 1.5651 | 33.1965 | 39.7646 |
| 0.2367        | 2.47  | 29000 | 0.4682          | 1.69   | 33.9955 | 38.3199 |
| 0.2392        | 2.56  | 30000 | 0.4720          | 1.9972 | 33.902  | 41.2525 |
| 0.2382        | 2.65  | 31000 | 0.4721          | 2.0682 | 33.6693 | 38.3833 |
| 0.2373        | 2.73  | 32000 | 0.4690          | 2.0952 | 33.553  | 38.3229 |
| 0.2356        | 2.82  | 33000 | 0.4691          | 1.3097 | 33.573  | 42.0221 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3