|
import numbers |
|
import os |
|
import queue as Queue |
|
import threading |
|
from typing import Iterable |
|
|
|
import mxnet as mx |
|
import numpy as np |
|
import torch |
|
from functools import partial |
|
from torch import distributed |
|
from torch.utils.data import DataLoader, Dataset |
|
from torchvision import transforms |
|
from torchvision.datasets import ImageFolder |
|
from utils.utils_distributed_sampler import DistributedSampler |
|
from utils.utils_distributed_sampler import get_dist_info, worker_init_fn |
|
|
|
|
|
def get_dataloader( |
|
root_dir, |
|
local_rank, |
|
batch_size, |
|
dali = False, |
|
dali_aug = False, |
|
seed = 2048, |
|
num_workers = 2, |
|
) -> Iterable: |
|
|
|
rec = os.path.join(root_dir, 'train.rec') |
|
idx = os.path.join(root_dir, 'train.idx') |
|
train_set = None |
|
|
|
|
|
if root_dir == "synthetic": |
|
train_set = SyntheticDataset() |
|
dali = False |
|
|
|
|
|
elif os.path.exists(rec) and os.path.exists(idx): |
|
train_set = MXFaceDataset(root_dir=root_dir, local_rank=local_rank) |
|
|
|
|
|
else: |
|
transform = transforms.Compose([ |
|
transforms.RandomHorizontalFlip(), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
]) |
|
train_set = ImageFolder(root_dir, transform) |
|
|
|
|
|
if dali: |
|
return dali_data_iter( |
|
batch_size=batch_size, rec_file=rec, idx_file=idx, |
|
num_threads=2, local_rank=local_rank, dali_aug=dali_aug) |
|
|
|
rank, world_size = get_dist_info() |
|
train_sampler = DistributedSampler( |
|
train_set, num_replicas=world_size, rank=rank, shuffle=True, seed=seed) |
|
|
|
if seed is None: |
|
init_fn = None |
|
else: |
|
init_fn = partial(worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) |
|
|
|
train_loader = DataLoaderX( |
|
local_rank=local_rank, |
|
dataset=train_set, |
|
batch_size=batch_size, |
|
sampler=train_sampler, |
|
num_workers=num_workers, |
|
pin_memory=True, |
|
drop_last=True, |
|
worker_init_fn=init_fn, |
|
) |
|
|
|
return train_loader |
|
|
|
class BackgroundGenerator(threading.Thread): |
|
def __init__(self, generator, local_rank, max_prefetch=6): |
|
super(BackgroundGenerator, self).__init__() |
|
self.queue = Queue.Queue(max_prefetch) |
|
self.generator = generator |
|
self.local_rank = local_rank |
|
self.daemon = True |
|
self.start() |
|
|
|
def run(self): |
|
torch.cuda.set_device(self.local_rank) |
|
for item in self.generator: |
|
self.queue.put(item) |
|
self.queue.put(None) |
|
|
|
def next(self): |
|
next_item = self.queue.get() |
|
if next_item is None: |
|
raise StopIteration |
|
return next_item |
|
|
|
def __next__(self): |
|
return self.next() |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
|
|
class DataLoaderX(DataLoader): |
|
|
|
def __init__(self, local_rank, **kwargs): |
|
super(DataLoaderX, self).__init__(**kwargs) |
|
self.stream = torch.cuda.Stream(local_rank) |
|
self.local_rank = local_rank |
|
|
|
def __iter__(self): |
|
self.iter = super(DataLoaderX, self).__iter__() |
|
self.iter = BackgroundGenerator(self.iter, self.local_rank) |
|
self.preload() |
|
return self |
|
|
|
def preload(self): |
|
self.batch = next(self.iter, None) |
|
if self.batch is None: |
|
return None |
|
with torch.cuda.stream(self.stream): |
|
for k in range(len(self.batch)): |
|
self.batch[k] = self.batch[k].to(device=self.local_rank, non_blocking=True) |
|
|
|
def __next__(self): |
|
torch.cuda.current_stream().wait_stream(self.stream) |
|
batch = self.batch |
|
if batch is None: |
|
raise StopIteration |
|
self.preload() |
|
return batch |
|
|
|
|
|
class MXFaceDataset(Dataset): |
|
def __init__(self, root_dir, local_rank): |
|
super(MXFaceDataset, self).__init__() |
|
self.transform = transforms.Compose( |
|
[transforms.ToPILImage(), |
|
transforms.RandomHorizontalFlip(), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
]) |
|
self.root_dir = root_dir |
|
self.local_rank = local_rank |
|
path_imgrec = os.path.join(root_dir, 'train.rec') |
|
path_imgidx = os.path.join(root_dir, 'train.idx') |
|
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') |
|
s = self.imgrec.read_idx(0) |
|
header, _ = mx.recordio.unpack(s) |
|
if header.flag > 0: |
|
self.header0 = (int(header.label[0]), int(header.label[1])) |
|
self.imgidx = np.array(range(1, int(header.label[0]))) |
|
else: |
|
self.imgidx = np.array(list(self.imgrec.keys)) |
|
|
|
def __getitem__(self, index): |
|
idx = self.imgidx[index] |
|
s = self.imgrec.read_idx(idx) |
|
header, img = mx.recordio.unpack(s) |
|
label = header.label |
|
if not isinstance(label, numbers.Number): |
|
label = label[0] |
|
label = torch.tensor(label, dtype=torch.long) |
|
sample = mx.image.imdecode(img).asnumpy() |
|
if self.transform is not None: |
|
sample = self.transform(sample) |
|
return sample, label |
|
|
|
def __len__(self): |
|
return len(self.imgidx) |
|
|
|
|
|
class SyntheticDataset(Dataset): |
|
def __init__(self): |
|
super(SyntheticDataset, self).__init__() |
|
img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.int32) |
|
img = np.transpose(img, (2, 0, 1)) |
|
img = torch.from_numpy(img).squeeze(0).float() |
|
img = ((img / 255) - 0.5) / 0.5 |
|
self.img = img |
|
self.label = 1 |
|
|
|
def __getitem__(self, index): |
|
return self.img, self.label |
|
|
|
def __len__(self): |
|
return 1000000 |
|
|
|
|
|
def dali_data_iter( |
|
batch_size: int, rec_file: str, idx_file: str, num_threads: int, |
|
initial_fill=32768, random_shuffle=True, |
|
prefetch_queue_depth=1, local_rank=0, name="reader", |
|
mean=(127.5, 127.5, 127.5), |
|
std=(127.5, 127.5, 127.5), |
|
dali_aug=False |
|
): |
|
""" |
|
Parameters: |
|
---------- |
|
initial_fill: int |
|
Size of the buffer that is used for shuffling. If random_shuffle is False, this parameter is ignored. |
|
|
|
""" |
|
rank: int = distributed.get_rank() |
|
world_size: int = distributed.get_world_size() |
|
import nvidia.dali.fn as fn |
|
import nvidia.dali.types as types |
|
from nvidia.dali.pipeline import Pipeline |
|
from nvidia.dali.plugin.pytorch import DALIClassificationIterator |
|
|
|
def dali_random_resize(img, resize_size, image_size=112): |
|
img = fn.resize(img, resize_x=resize_size, resize_y=resize_size) |
|
img = fn.resize(img, size=(image_size, image_size)) |
|
return img |
|
def dali_random_gaussian_blur(img, window_size): |
|
img = fn.gaussian_blur(img, window_size=window_size * 2 + 1) |
|
return img |
|
def dali_random_gray(img, prob_gray): |
|
saturate = fn.random.coin_flip(probability=1 - prob_gray) |
|
saturate = fn.cast(saturate, dtype=types.FLOAT) |
|
img = fn.hsv(img, saturation=saturate) |
|
return img |
|
def dali_random_hsv(img, hue, saturation): |
|
img = fn.hsv(img, hue=hue, saturation=saturation) |
|
return img |
|
def multiplexing(condition, true_case, false_case): |
|
neg_condition = condition ^ True |
|
return condition * true_case + neg_condition * false_case |
|
|
|
condition_resize = fn.random.coin_flip(probability=0.1) |
|
size_resize = fn.random.uniform(range=(int(112 * 0.5), int(112 * 0.8)), dtype=types.FLOAT) |
|
condition_blur = fn.random.coin_flip(probability=0.2) |
|
window_size_blur = fn.random.uniform(range=(1, 2), dtype=types.INT32) |
|
condition_flip = fn.random.coin_flip(probability=0.5) |
|
condition_hsv = fn.random.coin_flip(probability=0.2) |
|
hsv_hue = fn.random.uniform(range=(0., 20.), dtype=types.FLOAT) |
|
hsv_saturation = fn.random.uniform(range=(1., 1.2), dtype=types.FLOAT) |
|
|
|
pipe = Pipeline( |
|
batch_size=batch_size, num_threads=num_threads, |
|
device_id=local_rank, prefetch_queue_depth=prefetch_queue_depth, ) |
|
condition_flip = fn.random.coin_flip(probability=0.5) |
|
with pipe: |
|
jpegs, labels = fn.readers.mxnet( |
|
path=rec_file, index_path=idx_file, initial_fill=initial_fill, |
|
num_shards=world_size, shard_id=rank, |
|
random_shuffle=random_shuffle, pad_last_batch=False, name=name) |
|
images = fn.decoders.image(jpegs, device="mixed", output_type=types.RGB) |
|
if dali_aug: |
|
images = fn.cast(images, dtype=types.UINT8) |
|
images = multiplexing(condition_resize, dali_random_resize(images, size_resize, image_size=112), images) |
|
images = multiplexing(condition_blur, dali_random_gaussian_blur(images, window_size_blur), images) |
|
images = multiplexing(condition_hsv, dali_random_hsv(images, hsv_hue, hsv_saturation), images) |
|
images = dali_random_gray(images, 0.1) |
|
|
|
images = fn.crop_mirror_normalize( |
|
images, dtype=types.FLOAT, mean=mean, std=std, mirror=condition_flip) |
|
pipe.set_outputs(images, labels) |
|
pipe.build() |
|
return DALIWarper(DALIClassificationIterator(pipelines=[pipe], reader_name=name, )) |
|
|
|
|
|
@torch.no_grad() |
|
class DALIWarper(object): |
|
def __init__(self, dali_iter): |
|
self.iter = dali_iter |
|
|
|
def __next__(self): |
|
data_dict = self.iter.__next__()[0] |
|
tensor_data = data_dict['data'].cuda() |
|
tensor_label: torch.Tensor = data_dict['label'].cuda().long() |
|
tensor_label.squeeze_() |
|
return tensor_data, tensor_label |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def reset(self): |
|
self.iter.reset() |
|
|