File size: 4,244 Bytes
03da825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch

import click
import cv2
import glob
import os
import os.path as osp
from tqdm import tqdm
import yaml
import numpy as np

from additional_modules.eg3d.camera_utils import IntrinsicsSampler, LookAtPoseSampler
from data_preprocessing.data_preprocess import DataPreprocessor
from models import get_model
from resources.consts import IMAGE_EXTS
from utils.image_utils import tensor2img


@torch.no_grad()
@click.command()
@click.option('--source_root', type=str, required=True, help='Source root')
@click.option('--config_path', type=str, required=True, help='Config path')
@click.option('--model_path', type=str, required=True, help='Model path')
@click.option('--save_root', type=str, required=True, help='Save root')
@click.option('--cam_batch_size', type=int, default=1, help='Batch size for cam2world')
@click.option('--skip_preprocess', is_flag=True, help='Do not use preprocessing')
def main(source_root, config_path, model_path, save_root, skip_preprocess, cam_batch_size):
    '''
    Inference LP3D model. For each source image, render its novel views using a fixed camera trajectory
    '''

    # Preparing data
    device = 'cuda'
    processor = DataPreprocessor(device)

    source_paths = sorted(glob.glob(osp.join(source_root, '*')))
    source_paths = list(filter(lambda p: osp.splitext(p)[1][1:].lower() in IMAGE_EXTS, source_paths))
    assert len(source_paths) > 0, "No input image found"

    # Preparing data
    print('Preparing data...')
    all_source_data = []
    for source_path in tqdm(source_paths):
        if not skip_preprocess:
            all_source_data.append(processor.from_path(source_path, device))
        else:
            img = cv2.imread(source_path)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

            img = np.transpose(img, (2, 0, 1))[None, :, :, :] / 255.
            img = (img * 2 - 1)
            img = torch.from_numpy(img).float().to(device)
            all_source_data.append({
                'image': img
            })
    print(f'Number of sources: {len(all_source_data)}')

    # Preparing camera trajectory
    camera_lookat_point = torch.tensor([0, 0, 0.2]).float().to(device)
    yaw_range = 0.35
    pitch_range = 0.25
    num_keyframes = 50
    radius = 2.7

    trajectory_cam2worlds = []
    for view_idx in range(num_keyframes):
        yaw_angle = 3.14/2 + yaw_range * np.sin(2 * 3.14 * view_idx / num_keyframes)
        pitch_angle = 3.14/2 -0.05 + pitch_range * np.cos(2 * 3.14 * view_idx / num_keyframes)
        trajectory_cam2worlds.append(
            LookAtPoseSampler.sample(
                yaw_angle, pitch_angle, radius,
                camera_lookat_point,
                yaw_angle, pitch_angle, 0,
                device=device
            )
        )
    
    intrinsics = IntrinsicsSampler.sample(
        18.837, 0.5,
        0, 0,
        batch_size=1,
        device=device
    )

    # Preparing model
    with open(config_path, 'r') as f:
        options = yaml.safe_load(f)
    model = get_model(options['model']).to(device)
    model.eval()

    state_dict = torch.load(model_path, map_location='cpu')
    if 'state_dict' in state_dict:
        state_dict = state_dict['state_dict']
    model.load_state_dict(state_dict, strict=False)

    # Inference
    os.makedirs(save_root, exist_ok=True)

    for source_idx, source_data in tqdm(enumerate(all_source_data), total=len(all_source_data)):
        frames = []

        for start_idx in range(0, len(trajectory_cam2worlds), cam_batch_size):
            batch_cam2world = trajectory_cam2worlds[start_idx: start_idx + cam_batch_size]
            all_xds_data = [{'cam2world': c, 'intrinsics': intrinsics} for c in batch_cam2world]
            out = model(
                xs_data=source_data,
                all_xds_data=all_xds_data
            )

            for x in out:
                frames.append(tensor2img(x['image'], min_max=(-1, 1)))

        save_path = osp.join(save_root, f'{source_idx:04d}.mp4')
        height, width, _ = frames[0].shape
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        video = cv2.VideoWriter(save_path, fourcc, 30, (width, height))
        for frame in frames:
            video.write(frame)


if __name__ == '__main__':
    main()