File size: 5,591 Bytes
03da825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
'''
Adapted from https://github.com/cavalleria/cavaface.pytorch/blob/master/backbone/mobilefacenet.py
Original author cavalleria
'''
import torch.nn as nn
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Sequential, Module
import torch
class Flatten(Module):
def forward(self, x):
return x.view(x.size(0), -1)
class ConvBlock(Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
super(ConvBlock, self).__init__()
self.layers = nn.Sequential(
Conv2d(in_c, out_c, kernel, groups=groups, stride=stride, padding=padding, bias=False),
BatchNorm2d(num_features=out_c),
PReLU(num_parameters=out_c)
)
def forward(self, x):
return self.layers(x)
class LinearBlock(Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
super(LinearBlock, self).__init__()
self.layers = nn.Sequential(
Conv2d(in_c, out_c, kernel, stride, padding, groups=groups, bias=False),
BatchNorm2d(num_features=out_c)
)
def forward(self, x):
return self.layers(x)
class DepthWise(Module):
def __init__(self, in_c, out_c, residual=False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1):
super(DepthWise, self).__init__()
self.residual = residual
self.layers = nn.Sequential(
ConvBlock(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1)),
ConvBlock(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride),
LinearBlock(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
)
def forward(self, x):
short_cut = None
if self.residual:
short_cut = x
x = self.layers(x)
if self.residual:
output = short_cut + x
else:
output = x
return output
class Residual(Module):
def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)):
super(Residual, self).__init__()
modules = []
for _ in range(num_block):
modules.append(DepthWise(c, c, True, kernel, stride, padding, groups))
self.layers = Sequential(*modules)
def forward(self, x):
return self.layers(x)
class GDC(Module):
def __init__(self, embedding_size):
super(GDC, self).__init__()
self.layers = nn.Sequential(
LinearBlock(512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0)),
Flatten(),
Linear(512, embedding_size, bias=False),
BatchNorm1d(embedding_size))
def forward(self, x):
return self.layers(x)
class MobileFaceNet(Module):
def __init__(self, fp16=False, num_features=512, blocks=(1, 4, 6, 2), scale=2):
super(MobileFaceNet, self).__init__()
self.scale = scale
self.fp16 = fp16
self.layers = nn.ModuleList()
self.layers.append(
ConvBlock(3, 64 * self.scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1))
)
if blocks[0] == 1:
self.layers.append(
ConvBlock(64 * self.scale, 64 * self.scale, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
)
else:
self.layers.append(
Residual(64 * self.scale, num_block=blocks[0], groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
)
self.layers.extend(
[
DepthWise(64 * self.scale, 64 * self.scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128),
Residual(64 * self.scale, num_block=blocks[1], groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
DepthWise(64 * self.scale, 128 * self.scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256),
Residual(128 * self.scale, num_block=blocks[2], groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
DepthWise(128 * self.scale, 128 * self.scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512),
Residual(128 * self.scale, num_block=blocks[3], groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
])
self.conv_sep = ConvBlock(128 * self.scale, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0))
self.features = GDC(num_features)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
with torch.cuda.amp.autocast(self.fp16):
for func in self.layers:
x = func(x)
x = self.conv_sep(x.float() if self.fp16 else x)
x = self.features(x)
return x
def get_mbf(fp16, num_features, blocks=(1, 4, 6, 2), scale=2):
return MobileFaceNet(fp16, num_features, blocks, scale=scale)
def get_mbf_large(fp16, num_features, blocks=(2, 8, 12, 4), scale=4):
return MobileFaceNet(fp16, num_features, blocks, scale=scale)
|