File size: 6,250 Bytes
03da825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import numpy as np
import PIL
from PIL import Image
import cv2
import scipy
class LandmarkBasedImageAlign:
def __init__(self, output_size, transform_size):
self.output_size = output_size
self.transform_size = transform_size
@staticmethod
def calc_quad(lm):
# Calculate auxiliary vectors.
lm_eye_left = lm[36: 42] # left-clockwise
lm_eye_right = lm[42: 48] # left-clockwise
lm_mouth_outer = lm[48: 60] # left-clockwise
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
q_scale = 1.8
x = q_scale * x
y = q_scale * y
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
return quad, qsize
def _shrink(self, img, lm, quad, qsize):
shrink = int(np.floor(qsize / self.output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.LANCZOS)
lm /= rsize
quad /= shrink
qsize /= shrink
return img, lm, quad, qsize
def _crop(self, img, lm, quad, qsize):
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (
int(np.floor(min(quad[:, 0]))),
int(np.floor(min(quad[:, 1]))),
int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1])))
)
crop = (
max(crop[0] - border, 0),
max(crop[1] - border, 0),
min(crop[2] + border, img.size[0]),
min(crop[3] + border, img.size[1])
)
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
lm -= crop[0: 2]
quad -= crop[0:2]
return img, lm, quad, qsize
def _pad(self, img, lm, quad, qsize):
border = max(int(np.rint(qsize * 0.1)), 3)
pad = (
int(np.floor(min(quad[:, 0]))),
int(np.floor(min(quad[:, 1]))),
int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1])))
)
pad = (
max(-pad[0] + border, 0),
max(-pad[1] + border, 0),
max(pad[2] - img.size[0] + border, 0),
max(pad[3] - img.size[1] + border, 0)
)
if max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.array(img).astype(np.float32), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(
1.0 - np.minimum(
np.float32(x) / pad[0],
np.float32(w-1-x) / pad[2]
),
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])
)
low_res = cv2.resize(img, (0, 0), fx=0.1, fy=0.1, interpolation=cv2.INTER_AREA)
blur = qsize * 0.02*0.1
low_res = scipy.ndimage.gaussian_filter(low_res, [blur, blur, 0])
low_res = cv2.resize(low_res, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
img += (low_res - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
median = cv2.resize(img, (0, 0), fx=0.1, fy=0.1, interpolation=cv2.INTER_AREA)
median = np.median(median, axis=(0, 1))
img += (median - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
lm += pad[0: 2]
return img, lm, quad, qsize
def _extract_quad(self, img, lm, quad, qsize):
img_size = np.array([img.size[1], img.size[0]])[None, :]
quad_center = quad.mean(axis=0)
lm = lm - img_size / 2
quad_center = quad_center - img_size / 2
lm = lm - quad_center
rotate_angle = 2 * np.pi - np.arctan2(*np.flipud(quad[3] - quad[0]))
R = np.array([[np.cos(rotate_angle), -np.sin(rotate_angle)], [np.sin(rotate_angle), np.cos(rotate_angle)]])
lm = lm @ R.T
lm = lm / qsize * self.transform_size
lm = lm + np.array([self.transform_size / 2, self.transform_size / 2])[None, :]
img = img.transform(
(self.transform_size, self.transform_size),
PIL.Image.QUAD,
(quad + 0.5).flatten(),
PIL.Image.NEAREST
)
if self.output_size < self.transform_size:
lm = lm / self.transform_size * self.output_size
img = img.resize((self.output_size, self.output_size), PIL.Image.NEAREST)
return img, lm, quad, qsize
@staticmethod
def _debug(img, lm):
img = np.array(img)
for v in lm:
x, y = int(v[0]), int(v[1])
cv2.circle(img, (x, y), 10, (0, 255, 0), -1)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite('debug.png', img)
assert 0
def __call__(self, img, lm):
lm = lm.copy()
quad, qsize = self.calc_quad(lm)
img, lm, quad, qsize = self._shrink(img, lm, quad, qsize)
img, lm, quad, qsize = self._extract_quad(img, lm, quad, qsize)
return img, lm
if __name__ == '__main__':
from data_processing.face_detector import FaceDetector
face_detector = FaceDetector('cuda')
align_landmarks = LandmarkBasedImageAlign(output_size=1500, num_threads=1, transform_size=1024)
img = Image.open('test_image.png')
pred_lm, _ = face_detector(img)
img_aligned, lm_aligned = align_landmarks.align_image(img, pred_lm)
|