File size: 6,250 Bytes
03da825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
import PIL
from PIL import Image
import cv2
import scipy


class LandmarkBasedImageAlign:
    def __init__(self, output_size, transform_size):
        self.output_size = output_size
        self.transform_size = transform_size

    @staticmethod
    def calc_quad(lm):
        # Calculate auxiliary vectors.
        lm_eye_left = lm[36: 42]  # left-clockwise
        lm_eye_right = lm[42: 48]  # left-clockwise
        lm_mouth_outer = lm[48: 60]  # left-clockwise

        eye_left = np.mean(lm_eye_left, axis=0)
        eye_right = np.mean(lm_eye_right, axis=0)
        eye_avg = (eye_left + eye_right) * 0.5
        eye_to_eye = eye_right - eye_left
        mouth_left = lm_mouth_outer[0]
        mouth_right = lm_mouth_outer[6]
        mouth_avg = (mouth_left + mouth_right) * 0.5
        eye_to_mouth = mouth_avg - eye_avg

        # Choose oriented crop rectangle.
        x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
        x /= np.hypot(*x)
        x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
        y = np.flipud(x) * [-1, 1]
        q_scale = 1.8
        x = q_scale * x
        y = q_scale * y
        c = eye_avg + eye_to_mouth * 0.1
        quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])

        qsize = np.hypot(*x) * 2

        return quad, qsize

    def _shrink(self, img, lm, quad, qsize):
        shrink = int(np.floor(qsize / self.output_size * 0.5))

        if shrink > 1:
            rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
            img = img.resize(rsize, PIL.Image.LANCZOS)
            lm /= rsize
            quad /= shrink
            qsize /= shrink

        return img, lm, quad, qsize

    def _crop(self, img, lm, quad, qsize):
        border = max(int(np.rint(qsize * 0.1)), 3)
        crop = (
            int(np.floor(min(quad[:, 0]))),
            int(np.floor(min(quad[:, 1]))),
            int(np.ceil(max(quad[:, 0]))),
            int(np.ceil(max(quad[:, 1])))
        )
        crop = (
            max(crop[0] - border, 0),
            max(crop[1] - border, 0),
            min(crop[2] + border, img.size[0]),
            min(crop[3] + border, img.size[1])
        )
        if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
            img = img.crop(crop)
            lm -= crop[0: 2]
            quad -= crop[0:2]

        return img, lm, quad, qsize

    def _pad(self, img, lm, quad, qsize):
        border = max(int(np.rint(qsize * 0.1)), 3)
        pad = (
            int(np.floor(min(quad[:, 0]))),
            int(np.floor(min(quad[:, 1]))),
            int(np.ceil(max(quad[:, 0]))),
            int(np.ceil(max(quad[:, 1])))
        )
        pad = (
            max(-pad[0] + border, 0),
            max(-pad[1] + border, 0),
            max(pad[2] - img.size[0] + border, 0),
            max(pad[3] - img.size[1] + border, 0)
        )

        if max(pad) > border - 4:
            pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
            img = np.pad(np.array(img).astype(np.float32), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
            h, w, _ = img.shape
            y, x, _ = np.ogrid[:h, :w, :1]
            mask = np.maximum(
                1.0 - np.minimum(
                    np.float32(x) / pad[0],
                    np.float32(w-1-x) / pad[2]
                ),
                1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])
            )
            low_res = cv2.resize(img, (0, 0), fx=0.1, fy=0.1, interpolation=cv2.INTER_AREA)
            blur = qsize * 0.02*0.1
            low_res = scipy.ndimage.gaussian_filter(low_res, [blur, blur, 0])
            low_res = cv2.resize(low_res, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)

            img += (low_res - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
            median = cv2.resize(img, (0, 0), fx=0.1, fy=0.1, interpolation=cv2.INTER_AREA)
            median = np.median(median, axis=(0, 1))
            img += (median - img) * np.clip(mask, 0.0, 1.0)
            img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
            quad += pad[:2]
            lm += pad[0: 2]

        return img, lm, quad, qsize

    def _extract_quad(self, img, lm, quad, qsize):
        img_size = np.array([img.size[1], img.size[0]])[None, :]
        quad_center = quad.mean(axis=0)

        lm = lm - img_size / 2
        quad_center = quad_center - img_size / 2
        lm = lm - quad_center

        rotate_angle = 2 * np.pi - np.arctan2(*np.flipud(quad[3] - quad[0]))
        R = np.array([[np.cos(rotate_angle), -np.sin(rotate_angle)], [np.sin(rotate_angle), np.cos(rotate_angle)]])

        lm = lm @ R.T
        lm = lm / qsize * self.transform_size
        lm = lm + np.array([self.transform_size / 2, self.transform_size / 2])[None, :]

        img = img.transform(
            (self.transform_size, self.transform_size),
            PIL.Image.QUAD,
            (quad + 0.5).flatten(),
            PIL.Image.NEAREST
        )

        if self.output_size < self.transform_size:
            lm = lm / self.transform_size * self.output_size
            img = img.resize((self.output_size, self.output_size), PIL.Image.NEAREST)

        return img, lm, quad, qsize

    @staticmethod
    def _debug(img, lm):
        img = np.array(img)

        for v in lm:
            x, y = int(v[0]), int(v[1])
            cv2.circle(img, (x, y), 10, (0, 255, 0), -1)

        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        cv2.imwrite('debug.png', img)

        assert 0

    def __call__(self, img, lm):
        lm = lm.copy()
        quad, qsize = self.calc_quad(lm)

        img, lm, quad, qsize = self._shrink(img, lm, quad, qsize)
        img, lm, quad, qsize = self._extract_quad(img, lm, quad, qsize)

        return img, lm


if __name__ == '__main__':
    from data_processing.face_detector import FaceDetector
    face_detector = FaceDetector('cuda')
    align_landmarks = LandmarkBasedImageAlign(output_size=1500, num_threads=1, transform_size=1024)

    img = Image.open('test_image.png')

    pred_lm, _ = face_detector(img)
    img_aligned, lm_aligned = align_landmarks.align_image(img, pred_lm)