import numpy as np import torch def dct(x, norm=None): x_shape = x.shape N = x_shape[-1] x = x.contiguous().view(-1, N) v = torch.cat([x[:, ::2], x[:, 1::2].flip([1])], dim=1) Vc = torch.view_as_real(torch.fft.fft(v, dim=1)) # add this line k = - torch.arange(N, dtype=x.dtype, device=x.device)[None, :] * np.pi / (2 * N) W_r = torch.cos(k) W_i = torch.sin(k) V = Vc[:, :, 0] * W_r - Vc[:, :, 1] * W_i if norm == 'ortho': V[:, 0] /= np.sqrt(N) * 2 V[:, 1:] /= np.sqrt(N / 2) * 2 V = 2 * V.view(*x_shape) return V def idct(X, norm=None): x_shape = X.shape N = x_shape[-1] X_v = X.contiguous().view(-1, x_shape[-1]) / 2 if norm == 'ortho': X_v[:, 0] *= np.sqrt(N) * 2 X_v[:, 1:] *= np.sqrt(N / 2) * 2 k = torch.arange(x_shape[-1], dtype=X.dtype, device=X.device)[None, :] * np.pi / (2 * N) W_r = torch.cos(k) W_i = torch.sin(k) V_t_r = X_v V_t_i = torch.cat([X_v[:, :1] * 0, -X_v.flip([1])[:, :-1]], dim=1) V_r = V_t_r * W_r - V_t_i * W_i V_i = V_t_r * W_i + V_t_i * W_r V = torch.cat([V_r.unsqueeze(2), V_i.unsqueeze(2)], dim=2) # v = torch.irfft(V, 1, onesided=False) # comment this line v = torch.fft.irfft(torch.view_as_complex(V), n=V.shape[1], dim=1) # add this line x = v.new_zeros(v.shape) x[:, ::2] += v[:, :N - (N // 2)] x[:, 1::2] += v.flip([1])[:, :N // 2] return x.view(*x_shape)