import numpy as np import torch def print_arch(model, model_name='model'): print(f"| {model_name} Arch: ", model) num_params(model, model_name=model_name) def num_params(model, print_out=True, model_name="model"): parameters = filter(lambda p: p.requires_grad, model.parameters()) parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 if print_out: print(f'| {model_name} Trainable Parameters: %.3fM' % parameters) return parameters def get_device_of_model(model): return model.parameters().__next__().device def requires_grad(model): if isinstance(model, torch.nn.Module): for p in model.parameters(): p.requires_grad = True else: model.requires_grad = True def not_requires_grad(model): if isinstance(model, torch.nn.Module): for p in model.parameters(): p.requires_grad = False else: model.requires_grad = False