|
import torch |
|
from modules.real3d.secc_img2plane import OSAvatarSECC_Img2plane |
|
from modules.real3d.super_resolution.sr_with_ref import SuperresolutionHybrid8XDC_Warp |
|
from utils.commons.hparams import hparams |
|
|
|
|
|
class OSAvatarSECC_Img2plane_Torso(OSAvatarSECC_Img2plane): |
|
def __init__(self, hp=None): |
|
super().__init__(hp=hp) |
|
del self.superresolution |
|
self.superresolution = SuperresolutionHybrid8XDC_Warp(channels=32, img_resolution=self.img_resolution, sr_num_fp16_res=self.sr_num_fp16_res, sr_antialias=True, **self.sr_kwargs) |
|
|
|
def _forward_sr(self, rgb_image, feature_image, cond, ret, **synthesis_kwargs): |
|
hparams = self.hparams |
|
ones_ws = torch.ones([feature_image.shape[0], 14, hparams['w_dim']], dtype=feature_image.dtype, device=feature_image.device) |
|
sr_image, facev2v_ret = self.superresolution(rgb_image, feature_image, ones_ws, cond['ref_torso_img'], cond['bg_img'], ret['weights_img'], cond['segmap'], cond['kp_s'], cond['kp_d'], cond.get('target_torso_mask'), noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'}) |
|
ret.update(facev2v_ret) |
|
return sr_image |
|
|
|
def infer_synthesis_stage1(self, img, camera, cond=None, ret=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, **synthesis_kwargs): |
|
hparams = self.hparams |
|
if ret is None: ret = {} |
|
cam2world_matrix = camera[:, :16].view(-1, 4, 4) |
|
intrinsics = camera[:, 16:25].view(-1, 3, 3) |
|
|
|
neural_rendering_resolution = self.neural_rendering_resolution |
|
|
|
|
|
ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution) |
|
|
|
|
|
N, M, _ = ray_origins.shape |
|
if use_cached_backbone and self._last_planes is not None: |
|
planes = self._last_planes |
|
else: |
|
planes = self.cal_plane(img, cond) |
|
if cache_backbone: |
|
self._last_planes = planes |
|
|
|
|
|
planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1]) |
|
|
|
|
|
feature_samples, depth_samples, weights_samples, is_ray_valid = self.renderer(planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs) |
|
|
|
|
|
H = W = self.neural_rendering_resolution |
|
feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous() |
|
weights_image = weights_samples.permute(0, 2, 1).reshape(N,1,H,W).contiguous() |
|
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W) |
|
|
|
if hparams.get("mask_invalid_rays", False): |
|
is_ray_valid_mask = is_ray_valid.reshape([feature_samples.shape[0], 1,self.neural_rendering_resolution,self.neural_rendering_resolution]) |
|
feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] = -1 |
|
|
|
|
|
depth_image[~is_ray_valid_mask] = depth_image[is_ray_valid_mask].min().item() |
|
|
|
|
|
rgb_image = feature_image[:, :3] |
|
ret['weights_img'] = weights_image |
|
ones_ws = torch.ones([feature_image.shape[0], 14, hparams['w_dim']], dtype=feature_image.dtype, device=feature_image.device) |
|
facev2v_ret = self.superresolution.infer_forward_stage1(rgb_image, feature_image, ones_ws, cond['ref_torso_img'], cond['bg_img'], ret['weights_img'], cond['segmap'], cond['kp_s'], cond['kp_d'], noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'}) |
|
rgb_image = rgb_image.clamp(-1,1) |
|
facev2v_ret.update({'image_raw': rgb_image, 'image_depth': depth_image, 'image_feature': feature_image[:, 3:], 'plane': planes}) |
|
return facev2v_ret |
|
|
|
def infer_synthesis_stage2(self, facev2v_ret, **synthesis_kwargs): |
|
hparams = self.hparams |
|
ret = facev2v_ret |
|
sr_image, facev2v_ret = self.superresolution.infer_forward_stage2(facev2v_ret, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'}) |
|
sr_image = sr_image.clamp(-1,1) |
|
facev2v_ret['image'] = sr_image |
|
return ret |