|
""" |
|
Helpers for distributed training. |
|
""" |
|
|
|
import io |
|
import os |
|
import socket |
|
|
|
import blobfile as bf |
|
from mpi4py import MPI |
|
import torch as th |
|
import torch.distributed as dist |
|
|
|
|
|
|
|
GPUS_PER_NODE = 8 |
|
|
|
SETUP_RETRY_COUNT = 3 |
|
|
|
|
|
def setup_dist(): |
|
""" |
|
Setup a distributed process group. |
|
""" |
|
if dist.is_initialized(): |
|
return |
|
|
|
comm = MPI.COMM_WORLD |
|
backend = "gloo" if not th.cuda.is_available() else "nccl" |
|
|
|
if backend == "gloo": |
|
hostname = "localhost" |
|
else: |
|
hostname = socket.gethostbyname(socket.getfqdn()) |
|
os.environ["MASTER_ADDR"] = comm.bcast(hostname, root=0) |
|
os.environ["RANK"] = str(comm.rank) |
|
os.environ["WORLD_SIZE"] = str(comm.size) |
|
|
|
port = comm.bcast(_find_free_port(), root=0) |
|
os.environ["MASTER_PORT"] = str(port) |
|
dist.init_process_group(backend=backend, init_method="env://") |
|
|
|
|
|
def dev(): |
|
""" |
|
Get the device to use for torch.distributed. |
|
""" |
|
if th.cuda.is_available(): |
|
return th.device(f"cuda:{MPI.COMM_WORLD.Get_rank() % GPUS_PER_NODE}") |
|
return th.device("cpu") |
|
|
|
|
|
def load_state_dict(path, **kwargs): |
|
""" |
|
Load a PyTorch file without redundant fetches across MPI ranks. |
|
""" |
|
if MPI.COMM_WORLD.Get_rank() == 0: |
|
with bf.BlobFile(path, "rb") as f: |
|
data = f.read() |
|
else: |
|
data = None |
|
data = MPI.COMM_WORLD.bcast(data) |
|
return th.load(io.BytesIO(data), **kwargs) |
|
|
|
|
|
def sync_params(params): |
|
""" |
|
Synchronize a sequence of Tensors across ranks from rank 0. |
|
""" |
|
for p in params: |
|
with th.no_grad(): |
|
dist.broadcast(p, 0) |
|
|
|
|
|
def _find_free_port(): |
|
try: |
|
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) |
|
s.bind(("", 0)) |
|
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) |
|
return s.getsockname()[1] |
|
finally: |
|
s.close() |
|
|