ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
import torch
from torch import nn
from .espnet_positional_embedding import RelPositionalEncoding
from .espnet_transformer_attn import RelPositionMultiHeadedAttention, MultiHeadedAttention
from .layers import Swish, ConvolutionModule, EncoderLayer, MultiLayeredConv1d
from ..layers import Embedding
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
class ConformerLayers(nn.Module):
def __init__(self, hidden_size, num_layers, kernel_size=9, dropout=0.0, num_heads=4, use_last_norm=True):
super().__init__()
self.use_last_norm = use_last_norm
self.layers = nn.ModuleList()
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (hidden_size, hidden_size * 4, 1, dropout)
self.encoder_layers = nn.ModuleList([EncoderLayer(
hidden_size,
MultiHeadedAttention(num_heads, hidden_size, 0.0),
positionwise_layer(*positionwise_layer_args),
positionwise_layer(*positionwise_layer_args),
ConvolutionModule(hidden_size, kernel_size, Swish()),
dropout,
) for _ in range(num_layers)])
if self.use_last_norm:
self.layer_norm = nn.LayerNorm(hidden_size)
else:
self.layer_norm = nn.Linear(hidden_size, hidden_size)
def forward(self, x, x_mask):
"""
:param x: [B, T, H]
:param padding_mask: [B, T]
:return: [B, T, H]
"""
for l in self.encoder_layers:
x, mask = l(x, x_mask)
x = self.layer_norm(x) * x_mask
return x
class ConformerEncoder(ConformerLayers):
def __init__(self, hidden_size, dict_size=0, in_size=0, strides=[2,2], num_layers=None):
conformer_enc_kernel_size = 9
super().__init__(hidden_size, num_layers, conformer_enc_kernel_size)
self.dict_size = dict_size
if dict_size != 0:
self.embed = Embedding(dict_size, hidden_size, padding_idx=0)
else:
self.seq_proj_in = torch.nn.Linear(in_size, hidden_size)
self.seq_proj_out = torch.nn.Linear(hidden_size, in_size)
self.mel_in = torch.nn.Linear(160, hidden_size)
self.mel_pre_net = torch.nn.Sequential(*[
torch.nn.Conv1d(hidden_size, hidden_size, kernel_size=s * 2, stride=s, padding=s // 2)
for i, s in enumerate(strides)
])
def forward(self, seq_out, mels_timbre, other_embeds=0):
"""
:param src_tokens: [B, T]
:return: [B x T x C]
"""
x_lengths = (seq_out > 0).long().sum(-1)
x = seq_out
if self.dict_size != 0:
x = self.embed(x) + other_embeds # [B, T, H]
else:
x = self.seq_proj_in(x) + other_embeds # [B, T, H]
mels_timbre = self.mel_in(mels_timbre).transpose(1, 2)
mels_timbre = self.mel_pre_net(mels_timbre).transpose(1, 2)
T_out = x.size(1)
if self.dict_size != 0:
x_mask = torch.unsqueeze(sequence_mask(x_lengths + mels_timbre.size(1), x.size(1) + mels_timbre.size(1)), 2).to(x.dtype)
else:
x_mask = torch.cat((torch.ones(x.size(0), mels_timbre.size(1), 1).to(x.device), (x.abs().sum(2) > 0).float()[:, :, None]), dim=1)
x = torch.cat((mels_timbre, x), 1)
x = super(ConformerEncoder, self).forward(x, x_mask)
if self.dict_size != 0:
x = x[:, -T_out:, :]
else:
x = self.seq_proj_out(x[:, -T_out:, :])
return x
class ConformerDecoder(ConformerLayers):
def __init__(self, hidden_size, num_layers):
conformer_dec_kernel_size = 9
super().__init__(hidden_size, num_layers, conformer_dec_kernel_size)